Metamath Proof Explorer


Definition df-utop

Description: Definition of a topology induced by a uniform structure. Definition 3 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017)

Ref Expression
Assertion df-utop
|- unifTop = ( u e. U. ran UnifOn |-> { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cutop
 |-  unifTop
1 vu
 |-  u
2 cust
 |-  UnifOn
3 2 crn
 |-  ran UnifOn
4 3 cuni
 |-  U. ran UnifOn
5 va
 |-  a
6 1 cv
 |-  u
7 6 cuni
 |-  U. u
8 7 cdm
 |-  dom U. u
9 8 cpw
 |-  ~P dom U. u
10 vx
 |-  x
11 5 cv
 |-  a
12 vv
 |-  v
13 12 cv
 |-  v
14 10 cv
 |-  x
15 14 csn
 |-  { x }
16 13 15 cima
 |-  ( v " { x } )
17 16 11 wss
 |-  ( v " { x } ) C_ a
18 17 12 6 wrex
 |-  E. v e. u ( v " { x } ) C_ a
19 18 10 11 wral
 |-  A. x e. a E. v e. u ( v " { x } ) C_ a
20 19 5 9 crab
 |-  { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a }
21 1 4 20 cmpt
 |-  ( u e. U. ran UnifOn |-> { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } )
22 0 21 wceq
 |-  unifTop = ( u e. U. ran UnifOn |-> { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } )