Description: Definition of a topology induced by a uniform structure. Definition 3 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-utop | |- unifTop = ( u e. U. ran UnifOn |-> { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cutop | |- unifTop |
|
1 | vu | |- u |
|
2 | cust | |- UnifOn |
|
3 | 2 | crn | |- ran UnifOn |
4 | 3 | cuni | |- U. ran UnifOn |
5 | va | |- a |
|
6 | 1 | cv | |- u |
7 | 6 | cuni | |- U. u |
8 | 7 | cdm | |- dom U. u |
9 | 8 | cpw | |- ~P dom U. u |
10 | vx | |- x |
|
11 | 5 | cv | |- a |
12 | vv | |- v |
|
13 | 12 | cv | |- v |
14 | 10 | cv | |- x |
15 | 14 | csn | |- { x } |
16 | 13 15 | cima | |- ( v " { x } ) |
17 | 16 11 | wss | |- ( v " { x } ) C_ a |
18 | 17 12 6 | wrex | |- E. v e. u ( v " { x } ) C_ a |
19 | 18 10 11 | wral | |- A. x e. a E. v e. u ( v " { x } ) C_ a |
20 | 19 5 9 | crab | |- { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } |
21 | 1 4 20 | cmpt | |- ( u e. U. ran UnifOn |-> { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } ) |
22 | 0 21 | wceq | |- unifTop = ( u e. U. ran UnifOn |-> { a e. ~P dom U. u | A. x e. a E. v e. u ( v " { x } ) C_ a } ) |