| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cvc |  |-  CVecOLD | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | vs |  |-  s | 
						
							| 3 | 1 | cv |  |-  g | 
						
							| 4 |  | cablo |  |-  AbelOp | 
						
							| 5 | 3 4 | wcel |  |-  g e. AbelOp | 
						
							| 6 | 2 | cv |  |-  s | 
						
							| 7 |  | cc |  |-  CC | 
						
							| 8 | 3 | crn |  |-  ran g | 
						
							| 9 | 7 8 | cxp |  |-  ( CC X. ran g ) | 
						
							| 10 | 9 8 6 | wf |  |-  s : ( CC X. ran g ) --> ran g | 
						
							| 11 |  | vx |  |-  x | 
						
							| 12 |  | c1 |  |-  1 | 
						
							| 13 | 11 | cv |  |-  x | 
						
							| 14 | 12 13 6 | co |  |-  ( 1 s x ) | 
						
							| 15 | 14 13 | wceq |  |-  ( 1 s x ) = x | 
						
							| 16 |  | vy |  |-  y | 
						
							| 17 |  | vz |  |-  z | 
						
							| 18 | 16 | cv |  |-  y | 
						
							| 19 | 17 | cv |  |-  z | 
						
							| 20 | 13 19 3 | co |  |-  ( x g z ) | 
						
							| 21 | 18 20 6 | co |  |-  ( y s ( x g z ) ) | 
						
							| 22 | 18 13 6 | co |  |-  ( y s x ) | 
						
							| 23 | 18 19 6 | co |  |-  ( y s z ) | 
						
							| 24 | 22 23 3 | co |  |-  ( ( y s x ) g ( y s z ) ) | 
						
							| 25 | 21 24 | wceq |  |-  ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) | 
						
							| 26 | 25 17 8 | wral |  |-  A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) | 
						
							| 27 |  | caddc |  |-  + | 
						
							| 28 | 18 19 27 | co |  |-  ( y + z ) | 
						
							| 29 | 28 13 6 | co |  |-  ( ( y + z ) s x ) | 
						
							| 30 | 19 13 6 | co |  |-  ( z s x ) | 
						
							| 31 | 22 30 3 | co |  |-  ( ( y s x ) g ( z s x ) ) | 
						
							| 32 | 29 31 | wceq |  |-  ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) | 
						
							| 33 |  | cmul |  |-  x. | 
						
							| 34 | 18 19 33 | co |  |-  ( y x. z ) | 
						
							| 35 | 34 13 6 | co |  |-  ( ( y x. z ) s x ) | 
						
							| 36 | 18 30 6 | co |  |-  ( y s ( z s x ) ) | 
						
							| 37 | 35 36 | wceq |  |-  ( ( y x. z ) s x ) = ( y s ( z s x ) ) | 
						
							| 38 | 32 37 | wa |  |-  ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) | 
						
							| 39 | 38 17 7 | wral |  |-  A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) | 
						
							| 40 | 26 39 | wa |  |-  ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) | 
						
							| 41 | 40 16 7 | wral |  |-  A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) | 
						
							| 42 | 15 41 | wa |  |-  ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) | 
						
							| 43 | 42 11 8 | wral |  |-  A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) | 
						
							| 44 | 5 10 43 | w3a |  |-  ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) | 
						
							| 45 | 44 1 2 | copab |  |-  { <. g , s >. | ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) } | 
						
							| 46 | 0 45 | wceq |  |-  CVecOLD = { <. g , s >. | ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) } |