Metamath Proof Explorer


Definition df-vhc2

Description: Definition of a 2-element virtual hypotheses collection. (Contributed by Alan Sare, 23-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion df-vhc2
|- ( (. ph ,. ps ). <-> ( ph /\ ps ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph
 |-  ph
1 wps
 |-  ps
2 0 1 wvhc2
 |-  (. ph ,. ps ).
3 0 1 wa
 |-  ( ph /\ ps )
4 2 3 wb
 |-  ( (. ph ,. ps ). <-> ( ph /\ ps ) )