Metamath Proof Explorer


Definition df-vma

Description: Define the von Mangoldt function, which gives the logarithm of the prime at a prime power, and is zero elsewhere, see definition in ApostolNT p. 32. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion df-vma
|- Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvma
 |-  Lam
1 vx
 |-  x
2 cn
 |-  NN
3 vp
 |-  p
4 cprime
 |-  Prime
5 3 cv
 |-  p
6 cdvds
 |-  ||
7 1 cv
 |-  x
8 5 7 6 wbr
 |-  p || x
9 8 3 4 crab
 |-  { p e. Prime | p || x }
10 vs
 |-  s
11 chash
 |-  #
12 10 cv
 |-  s
13 12 11 cfv
 |-  ( # ` s )
14 c1
 |-  1
15 13 14 wceq
 |-  ( # ` s ) = 1
16 clog
 |-  log
17 12 cuni
 |-  U. s
18 17 16 cfv
 |-  ( log ` U. s )
19 cc0
 |-  0
20 15 18 19 cif
 |-  if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 )
21 10 9 20 csb
 |-  [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 )
22 1 2 21 cmpt
 |-  ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) )
23 0 22 wceq
 |-  Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) )