| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cvma |  |-  Lam | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | cn |  |-  NN | 
						
							| 3 |  | vp |  |-  p | 
						
							| 4 |  | cprime |  |-  Prime | 
						
							| 5 | 3 | cv |  |-  p | 
						
							| 6 |  | cdvds |  |-  || | 
						
							| 7 | 1 | cv |  |-  x | 
						
							| 8 | 5 7 6 | wbr |  |-  p || x | 
						
							| 9 | 8 3 4 | crab |  |-  { p e. Prime | p || x } | 
						
							| 10 |  | vs |  |-  s | 
						
							| 11 |  | chash |  |-  # | 
						
							| 12 | 10 | cv |  |-  s | 
						
							| 13 | 12 11 | cfv |  |-  ( # ` s ) | 
						
							| 14 |  | c1 |  |-  1 | 
						
							| 15 | 13 14 | wceq |  |-  ( # ` s ) = 1 | 
						
							| 16 |  | clog |  |-  log | 
						
							| 17 | 12 | cuni |  |-  U. s | 
						
							| 18 | 17 16 | cfv |  |-  ( log ` U. s ) | 
						
							| 19 |  | cc0 |  |-  0 | 
						
							| 20 | 15 18 19 | cif |  |-  if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) | 
						
							| 21 | 10 9 20 | csb |  |-  [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) | 
						
							| 22 | 1 2 21 | cmpt |  |-  ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) | 
						
							| 23 | 0 22 | wceq |  |-  Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |