Step |
Hyp |
Ref |
Expression |
0 |
|
cvma |
|- Lam |
1 |
|
vx |
|- x |
2 |
|
cn |
|- NN |
3 |
|
vp |
|- p |
4 |
|
cprime |
|- Prime |
5 |
3
|
cv |
|- p |
6 |
|
cdvds |
|- || |
7 |
1
|
cv |
|- x |
8 |
5 7 6
|
wbr |
|- p || x |
9 |
8 3 4
|
crab |
|- { p e. Prime | p || x } |
10 |
|
vs |
|- s |
11 |
|
chash |
|- # |
12 |
10
|
cv |
|- s |
13 |
12 11
|
cfv |
|- ( # ` s ) |
14 |
|
c1 |
|- 1 |
15 |
13 14
|
wceq |
|- ( # ` s ) = 1 |
16 |
|
clog |
|- log |
17 |
12
|
cuni |
|- U. s |
18 |
17 16
|
cfv |
|- ( log ` U. s ) |
19 |
|
cc0 |
|- 0 |
20 |
15 18 19
|
cif |
|- if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) |
21 |
10 9 20
|
csb |
|- [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) |
22 |
1 2 21
|
cmpt |
|- ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |
23 |
0 22
|
wceq |
|- Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |