Metamath Proof Explorer


Definition df-vrgp

Description: Define the canonical injection from the generating set I into the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion df-vrgp
|- varFGrp = ( i e. _V |-> ( j e. i |-> [ <" <. j , (/) >. "> ] ( ~FG ` i ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvrgp
 |-  varFGrp
1 vi
 |-  i
2 cvv
 |-  _V
3 vj
 |-  j
4 1 cv
 |-  i
5 3 cv
 |-  j
6 c0
 |-  (/)
7 5 6 cop
 |-  <. j , (/) >.
8 7 cs1
 |-  <" <. j , (/) >. ">
9 cefg
 |-  ~FG
10 4 9 cfv
 |-  ( ~FG ` i )
11 8 10 cec
 |-  [ <" <. j , (/) >. "> ] ( ~FG ` i )
12 3 4 11 cmpt
 |-  ( j e. i |-> [ <" <. j , (/) >. "> ] ( ~FG ` i ) )
13 1 2 12 cmpt
 |-  ( i e. _V |-> ( j e. i |-> [ <" <. j , (/) >. "> ] ( ~FG ` i ) ) )
14 0 13 wceq
 |-  varFGrp = ( i e. _V |-> ( j e. i |-> [ <" <. j , (/) >. "> ] ( ~FG ` i ) ) )