Step |
Hyp |
Ref |
Expression |
0 |
|
cvts |
|- vts |
1 |
|
vl |
|- l |
2 |
|
cc |
|- CC |
3 |
|
cmap |
|- ^m |
4 |
|
cn |
|- NN |
5 |
2 4 3
|
co |
|- ( CC ^m NN ) |
6 |
|
vn |
|- n |
7 |
|
cn0 |
|- NN0 |
8 |
|
vx |
|- x |
9 |
|
va |
|- a |
10 |
|
c1 |
|- 1 |
11 |
|
cfz |
|- ... |
12 |
6
|
cv |
|- n |
13 |
10 12 11
|
co |
|- ( 1 ... n ) |
14 |
1
|
cv |
|- l |
15 |
9
|
cv |
|- a |
16 |
15 14
|
cfv |
|- ( l ` a ) |
17 |
|
cmul |
|- x. |
18 |
|
ce |
|- exp |
19 |
|
ci |
|- _i |
20 |
|
c2 |
|- 2 |
21 |
|
cpi |
|- _pi |
22 |
20 21 17
|
co |
|- ( 2 x. _pi ) |
23 |
19 22 17
|
co |
|- ( _i x. ( 2 x. _pi ) ) |
24 |
8
|
cv |
|- x |
25 |
15 24 17
|
co |
|- ( a x. x ) |
26 |
23 25 17
|
co |
|- ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) |
27 |
26 18
|
cfv |
|- ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) |
28 |
16 27 17
|
co |
|- ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) |
29 |
13 28 9
|
csu |
|- sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) |
30 |
8 2 29
|
cmpt |
|- ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) |
31 |
1 6 5 7 30
|
cmpo |
|- ( l e. ( CC ^m NN ) , n e. NN0 |-> ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) ) |
32 |
0 31
|
wceq |
|- vts = ( l e. ( CC ^m NN ) , n e. NN0 |-> ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) ) |