Metamath Proof Explorer


Definition df-vts

Description: Define the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021)

Ref Expression
Assertion df-vts
|- vts = ( l e. ( CC ^m NN ) , n e. NN0 |-> ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvts
 |-  vts
1 vl
 |-  l
2 cc
 |-  CC
3 cmap
 |-  ^m
4 cn
 |-  NN
5 2 4 3 co
 |-  ( CC ^m NN )
6 vn
 |-  n
7 cn0
 |-  NN0
8 vx
 |-  x
9 va
 |-  a
10 c1
 |-  1
11 cfz
 |-  ...
12 6 cv
 |-  n
13 10 12 11 co
 |-  ( 1 ... n )
14 1 cv
 |-  l
15 9 cv
 |-  a
16 15 14 cfv
 |-  ( l ` a )
17 cmul
 |-  x.
18 ce
 |-  exp
19 ci
 |-  _i
20 c2
 |-  2
21 cpi
 |-  _pi
22 20 21 17 co
 |-  ( 2 x. _pi )
23 19 22 17 co
 |-  ( _i x. ( 2 x. _pi ) )
24 8 cv
 |-  x
25 15 24 17 co
 |-  ( a x. x )
26 23 25 17 co
 |-  ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) )
27 26 18 cfv
 |-  ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) )
28 16 27 17 co
 |-  ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) )
29 13 28 9 csu
 |-  sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) )
30 8 2 29 cmpt
 |-  ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) )
31 1 6 5 7 30 cmpo
 |-  ( l e. ( CC ^m NN ) , n e. NN0 |-> ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) )
32 0 31 wceq
 |-  vts = ( l e. ( CC ^m NN ) , n e. NN0 |-> ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) )