Step |
Hyp |
Ref |
Expression |
0 |
|
cvtxdg |
|- VtxDeg |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
cvtx |
|- Vtx |
4 |
1
|
cv |
|- g |
5 |
4 3
|
cfv |
|- ( Vtx ` g ) |
6 |
|
vv |
|- v |
7 |
|
ciedg |
|- iEdg |
8 |
4 7
|
cfv |
|- ( iEdg ` g ) |
9 |
|
ve |
|- e |
10 |
|
vu |
|- u |
11 |
6
|
cv |
|- v |
12 |
|
chash |
|- # |
13 |
|
vx |
|- x |
14 |
9
|
cv |
|- e |
15 |
14
|
cdm |
|- dom e |
16 |
10
|
cv |
|- u |
17 |
13
|
cv |
|- x |
18 |
17 14
|
cfv |
|- ( e ` x ) |
19 |
16 18
|
wcel |
|- u e. ( e ` x ) |
20 |
19 13 15
|
crab |
|- { x e. dom e | u e. ( e ` x ) } |
21 |
20 12
|
cfv |
|- ( # ` { x e. dom e | u e. ( e ` x ) } ) |
22 |
|
cxad |
|- +e |
23 |
16
|
csn |
|- { u } |
24 |
18 23
|
wceq |
|- ( e ` x ) = { u } |
25 |
24 13 15
|
crab |
|- { x e. dom e | ( e ` x ) = { u } } |
26 |
25 12
|
cfv |
|- ( # ` { x e. dom e | ( e ` x ) = { u } } ) |
27 |
21 26 22
|
co |
|- ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) |
28 |
10 11 27
|
cmpt |
|- ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) |
29 |
9 8 28
|
csb |
|- [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) |
30 |
6 5 29
|
csb |
|- [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) |
31 |
1 2 30
|
cmpt |
|- ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) ) |
32 |
0 31
|
wceq |
|- VtxDeg = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) ) |