Metamath Proof Explorer


Definition df-watsN

Description: Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference) atom" d . These are all atoms not in the polarity of { d } ) , which is the hyperplane determined by d . Definition of set W in Crawley p. 111. (Contributed by NM, 26-Jan-2012)

Ref Expression
Assertion df-watsN
|- WAtoms = ( k e. _V |-> ( d e. ( Atoms ` k ) |-> ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwpointsN
 |-  WAtoms
1 vk
 |-  k
2 cvv
 |-  _V
3 vd
 |-  d
4 catm
 |-  Atoms
5 1 cv
 |-  k
6 5 4 cfv
 |-  ( Atoms ` k )
7 cpolN
 |-  _|_P
8 5 7 cfv
 |-  ( _|_P ` k )
9 3 cv
 |-  d
10 9 csn
 |-  { d }
11 10 8 cfv
 |-  ( ( _|_P ` k ) ` { d } )
12 6 11 cdif
 |-  ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) )
13 3 6 12 cmpt
 |-  ( d e. ( Atoms ` k ) |-> ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) ) )
14 1 2 13 cmpt
 |-  ( k e. _V |-> ( d e. ( Atoms ` k ) |-> ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) ) ) )
15 0 14 wceq
 |-  WAtoms = ( k e. _V |-> ( d e. ( Atoms ` k ) |-> ( ( Atoms ` k ) \ ( ( _|_P ` k ) ` { d } ) ) ) )