Metamath Proof Explorer


Definition df-wina

Description: An ordinal is weakly inaccessible iff it is a regular limit cardinal. Note that our definition allows _om as a weakly inaccessible cardinal. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion df-wina
|- InaccW = { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwina
 |-  InaccW
1 vx
 |-  x
2 1 cv
 |-  x
3 c0
 |-  (/)
4 2 3 wne
 |-  x =/= (/)
5 ccf
 |-  cf
6 2 5 cfv
 |-  ( cf ` x )
7 6 2 wceq
 |-  ( cf ` x ) = x
8 vy
 |-  y
9 vz
 |-  z
10 8 cv
 |-  y
11 csdm
 |-  ~<
12 9 cv
 |-  z
13 10 12 11 wbr
 |-  y ~< z
14 13 9 2 wrex
 |-  E. z e. x y ~< z
15 14 8 2 wral
 |-  A. y e. x E. z e. x y ~< z
16 4 7 15 w3a
 |-  ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z )
17 16 1 cab
 |-  { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) }
18 0 17 wceq
 |-  InaccW = { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) }