Description: An ordinal is weakly inaccessible iff it is a regular limit cardinal. Note that our definition allows _om as a weakly inaccessible cardinal. (Contributed by Mario Carneiro, 22-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | df-wina | |- InaccW = { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cwina | |- InaccW |
|
1 | vx | |- x |
|
2 | 1 | cv | |- x |
3 | c0 | |- (/) |
|
4 | 2 3 | wne | |- x =/= (/) |
5 | ccf | |- cf |
|
6 | 2 5 | cfv | |- ( cf ` x ) |
7 | 6 2 | wceq | |- ( cf ` x ) = x |
8 | vy | |- y |
|
9 | vz | |- z |
|
10 | 8 | cv | |- y |
11 | csdm | |- ~< |
|
12 | 9 | cv | |- z |
13 | 10 12 11 | wbr | |- y ~< z |
14 | 13 9 2 | wrex | |- E. z e. x y ~< z |
15 | 14 8 2 | wral | |- A. y e. x E. z e. x y ~< z |
16 | 4 7 15 | w3a | |- ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) |
17 | 16 1 | cab | |- { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) } |
18 | 0 17 | wceq | |- InaccW = { x | ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) } |