Metamath Proof Explorer


Definition df-wlks

Description: Define the set of all walks (in a hypergraph). Such walks correspond to the s-walks "on the vertex level" (with s = 1), and also to 1-walks "on the edge level" (see wlk1walk ) discussed in Aksoy et al. The predicate F ( WalksG ) P can be read as "The pair <. F , P >. represents a walk in a graph G ", see also iswlk .

The condition { ( pk ) , ( p( k + 1 ) ) } C_ ( ( iEdgg )( fk ) ) (hereinafter referred to as C) would not be sufficient, because the repetition of a vertex in a walk (i.e. ( pk ) = ( p( k + 1 ) ) should be allowed only if there is a loop at ( pk ) . Otherwise, C would be fulfilled by each edge containing ( pk ) .

According to the definition of Bollobas p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020)

Ref Expression
Assertion df-wlks
|- Walks = ( g e. _V |-> { <. f , p >. | ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwlks
 |-  Walks
1 vg
 |-  g
2 cvv
 |-  _V
3 vf
 |-  f
4 vp
 |-  p
5 3 cv
 |-  f
6 ciedg
 |-  iEdg
7 1 cv
 |-  g
8 7 6 cfv
 |-  ( iEdg ` g )
9 8 cdm
 |-  dom ( iEdg ` g )
10 9 cword
 |-  Word dom ( iEdg ` g )
11 5 10 wcel
 |-  f e. Word dom ( iEdg ` g )
12 4 cv
 |-  p
13 cc0
 |-  0
14 cfz
 |-  ...
15 chash
 |-  #
16 5 15 cfv
 |-  ( # ` f )
17 13 16 14 co
 |-  ( 0 ... ( # ` f ) )
18 cvtx
 |-  Vtx
19 7 18 cfv
 |-  ( Vtx ` g )
20 17 19 12 wf
 |-  p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g )
21 vk
 |-  k
22 cfzo
 |-  ..^
23 13 16 22 co
 |-  ( 0 ..^ ( # ` f ) )
24 21 cv
 |-  k
25 24 12 cfv
 |-  ( p ` k )
26 caddc
 |-  +
27 c1
 |-  1
28 24 27 26 co
 |-  ( k + 1 )
29 28 12 cfv
 |-  ( p ` ( k + 1 ) )
30 25 29 wceq
 |-  ( p ` k ) = ( p ` ( k + 1 ) )
31 24 5 cfv
 |-  ( f ` k )
32 31 8 cfv
 |-  ( ( iEdg ` g ) ` ( f ` k ) )
33 25 csn
 |-  { ( p ` k ) }
34 32 33 wceq
 |-  ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) }
35 25 29 cpr
 |-  { ( p ` k ) , ( p ` ( k + 1 ) ) }
36 35 32 wss
 |-  { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) )
37 30 34 36 wif
 |-  if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) )
38 37 21 23 wral
 |-  A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) )
39 11 20 38 w3a
 |-  ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) )
40 39 3 4 copab
 |-  { <. f , p >. | ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) ) }
41 1 2 40 cmpt
 |-  ( g e. _V |-> { <. f , p >. | ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) ) } )
42 0 41 wceq
 |-  Walks = ( g e. _V |-> { <. f , p >. | ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) ) } )