| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cwlkson |
|- WalksOn |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
va |
|- a |
| 4 |
|
cvtx |
|- Vtx |
| 5 |
1
|
cv |
|- g |
| 6 |
5 4
|
cfv |
|- ( Vtx ` g ) |
| 7 |
|
vb |
|- b |
| 8 |
|
vf |
|- f |
| 9 |
|
vp |
|- p |
| 10 |
8
|
cv |
|- f |
| 11 |
|
cwlks |
|- Walks |
| 12 |
5 11
|
cfv |
|- ( Walks ` g ) |
| 13 |
9
|
cv |
|- p |
| 14 |
10 13 12
|
wbr |
|- f ( Walks ` g ) p |
| 15 |
|
cc0 |
|- 0 |
| 16 |
15 13
|
cfv |
|- ( p ` 0 ) |
| 17 |
3
|
cv |
|- a |
| 18 |
16 17
|
wceq |
|- ( p ` 0 ) = a |
| 19 |
|
chash |
|- # |
| 20 |
10 19
|
cfv |
|- ( # ` f ) |
| 21 |
20 13
|
cfv |
|- ( p ` ( # ` f ) ) |
| 22 |
7
|
cv |
|- b |
| 23 |
21 22
|
wceq |
|- ( p ` ( # ` f ) ) = b |
| 24 |
14 18 23
|
w3a |
|- ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) |
| 25 |
24 8 9
|
copab |
|- { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } |
| 26 |
3 7 6 6 25
|
cmpo |
|- ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) |
| 27 |
1 2 26
|
cmpt |
|- ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) ) |
| 28 |
0 27
|
wceq |
|- WalksOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) ) |