Metamath Proof Explorer


Definition df-wlkson

Description: Define the collection of walks with particular endpoints (in a hypergraph). The predicate F ( A ( WalksOnG ) B ) P can be read as "The pair <. F , P >. represents a walk from vertex A to vertex B in a graph G ", see also iswlkon . This corresponds to the "x0-x(l)-walks", see Definition in Bollobas p. 5. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017) (Revised by AV, 28-Dec-2020)

Ref Expression
Assertion df-wlkson
|- WalksOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwlkson
 |-  WalksOn
1 vg
 |-  g
2 cvv
 |-  _V
3 va
 |-  a
4 cvtx
 |-  Vtx
5 1 cv
 |-  g
6 5 4 cfv
 |-  ( Vtx ` g )
7 vb
 |-  b
8 vf
 |-  f
9 vp
 |-  p
10 8 cv
 |-  f
11 cwlks
 |-  Walks
12 5 11 cfv
 |-  ( Walks ` g )
13 9 cv
 |-  p
14 10 13 12 wbr
 |-  f ( Walks ` g ) p
15 cc0
 |-  0
16 15 13 cfv
 |-  ( p ` 0 )
17 3 cv
 |-  a
18 16 17 wceq
 |-  ( p ` 0 ) = a
19 chash
 |-  #
20 10 19 cfv
 |-  ( # ` f )
21 20 13 cfv
 |-  ( p ` ( # ` f ) )
22 7 cv
 |-  b
23 21 22 wceq
 |-  ( p ` ( # ` f ) ) = b
24 14 18 23 w3a
 |-  ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b )
25 24 8 9 copab
 |-  { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) }
26 3 7 6 6 25 cmpo
 |-  ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } )
27 1 2 26 cmpt
 |-  ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) )
28 0 27 wceq
 |-  WalksOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) )