Step |
Hyp |
Ref |
Expression |
0 |
|
cwlkson |
|- WalksOn |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
va |
|- a |
4 |
|
cvtx |
|- Vtx |
5 |
1
|
cv |
|- g |
6 |
5 4
|
cfv |
|- ( Vtx ` g ) |
7 |
|
vb |
|- b |
8 |
|
vf |
|- f |
9 |
|
vp |
|- p |
10 |
8
|
cv |
|- f |
11 |
|
cwlks |
|- Walks |
12 |
5 11
|
cfv |
|- ( Walks ` g ) |
13 |
9
|
cv |
|- p |
14 |
10 13 12
|
wbr |
|- f ( Walks ` g ) p |
15 |
|
cc0 |
|- 0 |
16 |
15 13
|
cfv |
|- ( p ` 0 ) |
17 |
3
|
cv |
|- a |
18 |
16 17
|
wceq |
|- ( p ` 0 ) = a |
19 |
|
chash |
|- # |
20 |
10 19
|
cfv |
|- ( # ` f ) |
21 |
20 13
|
cfv |
|- ( p ` ( # ` f ) ) |
22 |
7
|
cv |
|- b |
23 |
21 22
|
wceq |
|- ( p ` ( # ` f ) ) = b |
24 |
14 18 23
|
w3a |
|- ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) |
25 |
24 8 9
|
copab |
|- { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } |
26 |
3 7 6 6 25
|
cmpo |
|- ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) |
27 |
1 2 26
|
cmpt |
|- ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) ) |
28 |
0 27
|
wceq |
|- WalksOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( Walks ` g ) p /\ ( p ` 0 ) = a /\ ( p ` ( # ` f ) ) = b ) } ) ) |