| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cwwspthsnon |
|- WSPathsNOn |
| 1 |
|
vn |
|- n |
| 2 |
|
cn0 |
|- NN0 |
| 3 |
|
vg |
|- g |
| 4 |
|
cvv |
|- _V |
| 5 |
|
va |
|- a |
| 6 |
|
cvtx |
|- Vtx |
| 7 |
3
|
cv |
|- g |
| 8 |
7 6
|
cfv |
|- ( Vtx ` g ) |
| 9 |
|
vb |
|- b |
| 10 |
|
vw |
|- w |
| 11 |
5
|
cv |
|- a |
| 12 |
1
|
cv |
|- n |
| 13 |
|
cwwlksnon |
|- WWalksNOn |
| 14 |
12 7 13
|
co |
|- ( n WWalksNOn g ) |
| 15 |
9
|
cv |
|- b |
| 16 |
11 15 14
|
co |
|- ( a ( n WWalksNOn g ) b ) |
| 17 |
|
vf |
|- f |
| 18 |
17
|
cv |
|- f |
| 19 |
|
cspthson |
|- SPathsOn |
| 20 |
7 19
|
cfv |
|- ( SPathsOn ` g ) |
| 21 |
11 15 20
|
co |
|- ( a ( SPathsOn ` g ) b ) |
| 22 |
10
|
cv |
|- w |
| 23 |
18 22 21
|
wbr |
|- f ( a ( SPathsOn ` g ) b ) w |
| 24 |
23 17
|
wex |
|- E. f f ( a ( SPathsOn ` g ) b ) w |
| 25 |
24 10 16
|
crab |
|- { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } |
| 26 |
5 9 8 8 25
|
cmpo |
|- ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) |
| 27 |
1 3 2 4 26
|
cmpo |
|- ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) ) |
| 28 |
0 27
|
wceq |
|- WSPathsNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) ) |