Step |
Hyp |
Ref |
Expression |
0 |
|
cwwlks |
|- WWalks |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
cvtx |
|- Vtx |
5 |
1
|
cv |
|- g |
6 |
5 4
|
cfv |
|- ( Vtx ` g ) |
7 |
6
|
cword |
|- Word ( Vtx ` g ) |
8 |
3
|
cv |
|- w |
9 |
|
c0 |
|- (/) |
10 |
8 9
|
wne |
|- w =/= (/) |
11 |
|
vi |
|- i |
12 |
|
cc0 |
|- 0 |
13 |
|
cfzo |
|- ..^ |
14 |
|
chash |
|- # |
15 |
8 14
|
cfv |
|- ( # ` w ) |
16 |
|
cmin |
|- - |
17 |
|
c1 |
|- 1 |
18 |
15 17 16
|
co |
|- ( ( # ` w ) - 1 ) |
19 |
12 18 13
|
co |
|- ( 0 ..^ ( ( # ` w ) - 1 ) ) |
20 |
11
|
cv |
|- i |
21 |
20 8
|
cfv |
|- ( w ` i ) |
22 |
|
caddc |
|- + |
23 |
20 17 22
|
co |
|- ( i + 1 ) |
24 |
23 8
|
cfv |
|- ( w ` ( i + 1 ) ) |
25 |
21 24
|
cpr |
|- { ( w ` i ) , ( w ` ( i + 1 ) ) } |
26 |
|
cedg |
|- Edg |
27 |
5 26
|
cfv |
|- ( Edg ` g ) |
28 |
25 27
|
wcel |
|- { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) |
29 |
28 11 19
|
wral |
|- A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) |
30 |
10 29
|
wa |
|- ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) |
31 |
30 3 7
|
crab |
|- { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } |
32 |
1 2 31
|
cmpt |
|- ( g e. _V |-> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } ) |
33 |
0 32
|
wceq |
|- WWalks = ( g e. _V |-> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } ) |