Metamath Proof Explorer


Definition df-wwlksn

Description: Define the set of all walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks . (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)

Ref Expression
Assertion df-wwlksn
|- WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwwlksn
 |-  WWalksN
1 vn
 |-  n
2 cn0
 |-  NN0
3 vg
 |-  g
4 cvv
 |-  _V
5 vw
 |-  w
6 cwwlks
 |-  WWalks
7 3 cv
 |-  g
8 7 6 cfv
 |-  ( WWalks ` g )
9 chash
 |-  #
10 5 cv
 |-  w
11 10 9 cfv
 |-  ( # ` w )
12 1 cv
 |-  n
13 caddc
 |-  +
14 c1
 |-  1
15 12 14 13 co
 |-  ( n + 1 )
16 11 15 wceq
 |-  ( # ` w ) = ( n + 1 )
17 16 5 8 crab
 |-  { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) }
18 1 3 2 4 17 cmpo
 |-  ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } )
19 0 18 wceq
 |-  WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } )