Description: Define the set of all walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks . (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wwlksn | |- WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cwwlksn | |- WWalksN | |
| 1 | vn | |- n | |
| 2 | cn0 | |- NN0 | |
| 3 | vg | |- g | |
| 4 | cvv | |- _V | |
| 5 | vw | |- w | |
| 6 | cwwlks | |- WWalks | |
| 7 | 3 | cv | |- g | 
| 8 | 7 6 | cfv | |- ( WWalks ` g ) | 
| 9 | chash | |- # | |
| 10 | 5 | cv | |- w | 
| 11 | 10 9 | cfv | |- ( # ` w ) | 
| 12 | 1 | cv | |- n | 
| 13 | caddc | |- + | |
| 14 | c1 | |- 1 | |
| 15 | 12 14 13 | co | |- ( n + 1 ) | 
| 16 | 11 15 | wceq | |- ( # ` w ) = ( n + 1 ) | 
| 17 | 16 5 8 | crab |  |-  { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } | 
| 18 | 1 3 2 4 17 | cmpo |  |-  ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) | 
| 19 | 0 18 | wceq |  |-  WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) |