Step |
Hyp |
Ref |
Expression |
0 |
|
cwwlksnon |
|- WWalksNOn |
1 |
|
vn |
|- n |
2 |
|
cn0 |
|- NN0 |
3 |
|
vg |
|- g |
4 |
|
cvv |
|- _V |
5 |
|
va |
|- a |
6 |
|
cvtx |
|- Vtx |
7 |
3
|
cv |
|- g |
8 |
7 6
|
cfv |
|- ( Vtx ` g ) |
9 |
|
vb |
|- b |
10 |
|
vw |
|- w |
11 |
1
|
cv |
|- n |
12 |
|
cwwlksn |
|- WWalksN |
13 |
11 7 12
|
co |
|- ( n WWalksN g ) |
14 |
10
|
cv |
|- w |
15 |
|
cc0 |
|- 0 |
16 |
15 14
|
cfv |
|- ( w ` 0 ) |
17 |
5
|
cv |
|- a |
18 |
16 17
|
wceq |
|- ( w ` 0 ) = a |
19 |
11 14
|
cfv |
|- ( w ` n ) |
20 |
9
|
cv |
|- b |
21 |
19 20
|
wceq |
|- ( w ` n ) = b |
22 |
18 21
|
wa |
|- ( ( w ` 0 ) = a /\ ( w ` n ) = b ) |
23 |
22 10 13
|
crab |
|- { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } |
24 |
5 9 8 8 23
|
cmpo |
|- ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) |
25 |
1 3 2 4 24
|
cmpo |
|- ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) |
26 |
0 25
|
wceq |
|- WWalksNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) |