| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cwwlksnon |  |-  WWalksNOn | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cn0 |  |-  NN0 | 
						
							| 3 |  | vg |  |-  g | 
						
							| 4 |  | cvv |  |-  _V | 
						
							| 5 |  | va |  |-  a | 
						
							| 6 |  | cvtx |  |-  Vtx | 
						
							| 7 | 3 | cv |  |-  g | 
						
							| 8 | 7 6 | cfv |  |-  ( Vtx ` g ) | 
						
							| 9 |  | vb |  |-  b | 
						
							| 10 |  | vw |  |-  w | 
						
							| 11 | 1 | cv |  |-  n | 
						
							| 12 |  | cwwlksn |  |-  WWalksN | 
						
							| 13 | 11 7 12 | co |  |-  ( n WWalksN g ) | 
						
							| 14 | 10 | cv |  |-  w | 
						
							| 15 |  | cc0 |  |-  0 | 
						
							| 16 | 15 14 | cfv |  |-  ( w ` 0 ) | 
						
							| 17 | 5 | cv |  |-  a | 
						
							| 18 | 16 17 | wceq |  |-  ( w ` 0 ) = a | 
						
							| 19 | 11 14 | cfv |  |-  ( w ` n ) | 
						
							| 20 | 9 | cv |  |-  b | 
						
							| 21 | 19 20 | wceq |  |-  ( w ` n ) = b | 
						
							| 22 | 18 21 | wa |  |-  ( ( w ` 0 ) = a /\ ( w ` n ) = b ) | 
						
							| 23 | 22 10 13 | crab |  |-  { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } | 
						
							| 24 | 5 9 8 8 23 | cmpo |  |-  ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) | 
						
							| 25 | 1 3 2 4 24 | cmpo |  |-  ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) | 
						
							| 26 | 0 25 | wceq |  |-  WWalksNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) |