Step |
Hyp |
Ref |
Expression |
0 |
|
cxad |
|- +e |
1 |
|
vx |
|- x |
2 |
|
cxr |
|- RR* |
3 |
|
vy |
|- y |
4 |
1
|
cv |
|- x |
5 |
|
cpnf |
|- +oo |
6 |
4 5
|
wceq |
|- x = +oo |
7 |
3
|
cv |
|- y |
8 |
|
cmnf |
|- -oo |
9 |
7 8
|
wceq |
|- y = -oo |
10 |
|
cc0 |
|- 0 |
11 |
9 10 5
|
cif |
|- if ( y = -oo , 0 , +oo ) |
12 |
4 8
|
wceq |
|- x = -oo |
13 |
7 5
|
wceq |
|- y = +oo |
14 |
13 10 8
|
cif |
|- if ( y = +oo , 0 , -oo ) |
15 |
|
caddc |
|- + |
16 |
4 7 15
|
co |
|- ( x + y ) |
17 |
9 8 16
|
cif |
|- if ( y = -oo , -oo , ( x + y ) ) |
18 |
13 5 17
|
cif |
|- if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) |
19 |
12 14 18
|
cif |
|- if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) |
20 |
6 11 19
|
cif |
|- if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) |
21 |
1 3 2 2 20
|
cmpo |
|- ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |
22 |
0 21
|
wceq |
|- +e = ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |