| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cxad |  |-  +e | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | cxr |  |-  RR* | 
						
							| 3 |  | vy |  |-  y | 
						
							| 4 | 1 | cv |  |-  x | 
						
							| 5 |  | cpnf |  |-  +oo | 
						
							| 6 | 4 5 | wceq |  |-  x = +oo | 
						
							| 7 | 3 | cv |  |-  y | 
						
							| 8 |  | cmnf |  |-  -oo | 
						
							| 9 | 7 8 | wceq |  |-  y = -oo | 
						
							| 10 |  | cc0 |  |-  0 | 
						
							| 11 | 9 10 5 | cif |  |-  if ( y = -oo , 0 , +oo ) | 
						
							| 12 | 4 8 | wceq |  |-  x = -oo | 
						
							| 13 | 7 5 | wceq |  |-  y = +oo | 
						
							| 14 | 13 10 8 | cif |  |-  if ( y = +oo , 0 , -oo ) | 
						
							| 15 |  | caddc |  |-  + | 
						
							| 16 | 4 7 15 | co |  |-  ( x + y ) | 
						
							| 17 | 9 8 16 | cif |  |-  if ( y = -oo , -oo , ( x + y ) ) | 
						
							| 18 | 13 5 17 | cif |  |-  if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) | 
						
							| 19 | 12 14 18 | cif |  |-  if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) | 
						
							| 20 | 6 11 19 | cif |  |-  if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) | 
						
							| 21 | 1 3 2 2 20 | cmpo |  |-  ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) | 
						
							| 22 | 0 21 | wceq |  |-  +e = ( x e. RR* , y e. RR* |-> if ( x = +oo , if ( y = -oo , 0 , +oo ) , if ( x = -oo , if ( y = +oo , 0 , -oo ) , if ( y = +oo , +oo , if ( y = -oo , -oo , ( x + y ) ) ) ) ) ) |