Metamath Proof Explorer


Definition df-xko

Description: Define the compact-open topology, which is the natural topology on the set of continuous functions between two topological spaces. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion df-xko
|- ^ko = ( s e. Top , r e. Top |-> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxko
 |-  ^ko
1 vs
 |-  s
2 ctop
 |-  Top
3 vr
 |-  r
4 ctg
 |-  topGen
5 cfi
 |-  fi
6 vk
 |-  k
7 vx
 |-  x
8 3 cv
 |-  r
9 8 cuni
 |-  U. r
10 9 cpw
 |-  ~P U. r
11 crest
 |-  |`t
12 7 cv
 |-  x
13 8 12 11 co
 |-  ( r |`t x )
14 ccmp
 |-  Comp
15 13 14 wcel
 |-  ( r |`t x ) e. Comp
16 15 7 10 crab
 |-  { x e. ~P U. r | ( r |`t x ) e. Comp }
17 vv
 |-  v
18 1 cv
 |-  s
19 vf
 |-  f
20 ccn
 |-  Cn
21 8 18 20 co
 |-  ( r Cn s )
22 19 cv
 |-  f
23 6 cv
 |-  k
24 22 23 cima
 |-  ( f " k )
25 17 cv
 |-  v
26 24 25 wss
 |-  ( f " k ) C_ v
27 26 19 21 crab
 |-  { f e. ( r Cn s ) | ( f " k ) C_ v }
28 6 17 16 18 27 cmpo
 |-  ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } )
29 28 crn
 |-  ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } )
30 29 5 cfv
 |-  ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) )
31 30 4 cfv
 |-  ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) )
32 1 3 2 2 31 cmpo
 |-  ( s e. Top , r e. Top |-> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) )
33 0 32 wceq
 |-  ^ko = ( s e. Top , r e. Top |-> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) )