Step |
Hyp |
Ref |
Expression |
0 |
|
cxms |
|- *MetSp |
1 |
|
vf |
|- f |
2 |
|
ctps |
|- TopSp |
3 |
|
ctopn |
|- TopOpen |
4 |
1
|
cv |
|- f |
5 |
4 3
|
cfv |
|- ( TopOpen ` f ) |
6 |
|
cmopn |
|- MetOpen |
7 |
|
cds |
|- dist |
8 |
4 7
|
cfv |
|- ( dist ` f ) |
9 |
|
cbs |
|- Base |
10 |
4 9
|
cfv |
|- ( Base ` f ) |
11 |
10 10
|
cxp |
|- ( ( Base ` f ) X. ( Base ` f ) ) |
12 |
8 11
|
cres |
|- ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) |
13 |
12 6
|
cfv |
|- ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) |
14 |
5 13
|
wceq |
|- ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) |
15 |
14 1 2
|
crab |
|- { f e. TopSp | ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) } |
16 |
0 15
|
wceq |
|- *MetSp = { f e. TopSp | ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) } |