Metamath Proof Explorer


Definition df-xms

Description: Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-xms
|- *MetSp = { f e. TopSp | ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxms
 |-  *MetSp
1 vf
 |-  f
2 ctps
 |-  TopSp
3 ctopn
 |-  TopOpen
4 1 cv
 |-  f
5 4 3 cfv
 |-  ( TopOpen ` f )
6 cmopn
 |-  MetOpen
7 cds
 |-  dist
8 4 7 cfv
 |-  ( dist ` f )
9 cbs
 |-  Base
10 4 9 cfv
 |-  ( Base ` f )
11 10 10 cxp
 |-  ( ( Base ` f ) X. ( Base ` f ) )
12 8 11 cres
 |-  ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) )
13 12 6 cfv
 |-  ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) )
14 5 13 wceq
 |-  ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) )
15 14 1 2 crab
 |-  { f e. TopSp | ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) }
16 0 15 wceq
 |-  *MetSp = { f e. TopSp | ( TopOpen ` f ) = ( MetOpen ` ( ( dist ` f ) |` ( ( Base ` f ) X. ( Base ` f ) ) ) ) }