Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xneg | |- -e A = if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | 0 | cxne | |- -e A |
| 2 | cpnf | |- +oo |
|
| 3 | 0 2 | wceq | |- A = +oo |
| 4 | cmnf | |- -oo |
|
| 5 | 0 4 | wceq | |- A = -oo |
| 6 | 0 | cneg | |- -u A |
| 7 | 5 2 6 | cif | |- if ( A = -oo , +oo , -u A ) |
| 8 | 3 4 7 | cif | |- if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) |
| 9 | 1 8 | wceq | |- -e A = if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) ) |