Metamath Proof Explorer


Definition df-xneg

Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011)

Ref Expression
Assertion df-xneg
|- -e A = if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 cxne
 |-  -e A
2 cpnf
 |-  +oo
3 0 2 wceq
 |-  A = +oo
4 cmnf
 |-  -oo
5 0 4 wceq
 |-  A = -oo
6 0 cneg
 |-  -u A
7 5 2 6 cif
 |-  if ( A = -oo , +oo , -u A )
8 3 4 7 cif
 |-  if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) )
9 1 8 wceq
 |-  -e A = if ( A = +oo , -oo , if ( A = -oo , +oo , -u A ) )