| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cxps | 
							 |-  Xs.  | 
						
						
							| 1 | 
							
								
							 | 
							vr | 
							 |-  r  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							 |-  _V  | 
						
						
							| 3 | 
							
								
							 | 
							vs | 
							 |-  s  | 
						
						
							| 4 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 5 | 
							
								
							 | 
							cbs | 
							 |-  Base  | 
						
						
							| 6 | 
							
								1
							 | 
							cv | 
							 |-  r  | 
						
						
							| 7 | 
							
								6 5
							 | 
							cfv | 
							 |-  ( Base ` r )  | 
						
						
							| 8 | 
							
								
							 | 
							vy | 
							 |-  y  | 
						
						
							| 9 | 
							
								3
							 | 
							cv | 
							 |-  s  | 
						
						
							| 10 | 
							
								9 5
							 | 
							cfv | 
							 |-  ( Base ` s )  | 
						
						
							| 11 | 
							
								
							 | 
							c0 | 
							 |-  (/)  | 
						
						
							| 12 | 
							
								4
							 | 
							cv | 
							 |-  x  | 
						
						
							| 13 | 
							
								11 12
							 | 
							cop | 
							 |-  <. (/) , x >.  | 
						
						
							| 14 | 
							
								
							 | 
							c1o | 
							 |-  1o  | 
						
						
							| 15 | 
							
								8
							 | 
							cv | 
							 |-  y  | 
						
						
							| 16 | 
							
								14 15
							 | 
							cop | 
							 |-  <. 1o , y >.  | 
						
						
							| 17 | 
							
								13 16
							 | 
							cpr | 
							 |-  { <. (/) , x >. , <. 1o , y >. } | 
						
						
							| 18 | 
							
								4 8 7 10 17
							 | 
							cmpo | 
							 |-  ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
						
							| 19 | 
							
								18
							 | 
							ccnv | 
							 |-  `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
						
							| 20 | 
							
								
							 | 
							cimas | 
							 |-  "s  | 
						
						
							| 21 | 
							
								
							 | 
							csca | 
							 |-  Scalar  | 
						
						
							| 22 | 
							
								6 21
							 | 
							cfv | 
							 |-  ( Scalar ` r )  | 
						
						
							| 23 | 
							
								
							 | 
							cprds | 
							 |-  Xs_  | 
						
						
							| 24 | 
							
								11 6
							 | 
							cop | 
							 |-  <. (/) , r >.  | 
						
						
							| 25 | 
							
								14 9
							 | 
							cop | 
							 |-  <. 1o , s >.  | 
						
						
							| 26 | 
							
								24 25
							 | 
							cpr | 
							 |-  { <. (/) , r >. , <. 1o , s >. } | 
						
						
							| 27 | 
							
								22 26 23
							 | 
							co | 
							 |-  ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) | 
						
						
							| 28 | 
							
								19 27 20
							 | 
							co | 
							 |-  ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) | 
						
						
							| 29 | 
							
								1 3 2 2 28
							 | 
							cmpo | 
							 |-  ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) | 
						
						
							| 30 | 
							
								0 29
							 | 
							wceq | 
							 |-  Xs. = ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) |