Metamath Proof Explorer


Definition df-xr

Description: Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of Gleason p. 173. (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion df-xr
|- RR* = ( RR u. { +oo , -oo } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxr
 |-  RR*
1 cr
 |-  RR
2 cpnf
 |-  +oo
3 cmnf
 |-  -oo
4 2 3 cpr
 |-  { +oo , -oo }
5 1 4 cun
 |-  ( RR u. { +oo , -oo } )
6 0 5 wceq
 |-  RR* = ( RR u. { +oo , -oo } )