Metamath Proof Explorer


Definition df-z

Description: Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in Apostol p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion df-z
|- ZZ = { n e. RR | ( n = 0 \/ n e. NN \/ -u n e. NN ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cz
 |-  ZZ
1 vn
 |-  n
2 cr
 |-  RR
3 1 cv
 |-  n
4 cc0
 |-  0
5 3 4 wceq
 |-  n = 0
6 cn
 |-  NN
7 3 6 wcel
 |-  n e. NN
8 3 cneg
 |-  -u n
9 8 6 wcel
 |-  -u n e. NN
10 5 7 9 w3o
 |-  ( n = 0 \/ n e. NN \/ -u n e. NN )
11 10 1 2 crab
 |-  { n e. RR | ( n = 0 \/ n e. NN \/ -u n e. NN ) }
12 0 11 wceq
 |-  ZZ = { n e. RR | ( n = 0 \/ n e. NN \/ -u n e. NN ) }