| Step | Hyp | Ref | Expression | 
						
							| 0 |  | czn |  |-  Z/nZ | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cn0 |  |-  NN0 | 
						
							| 3 |  | czring |  |-  ZZring | 
						
							| 4 |  | vz |  |-  z | 
						
							| 5 | 4 | cv |  |-  z | 
						
							| 6 |  | cqus |  |-  /s | 
						
							| 7 |  | cqg |  |-  ~QG | 
						
							| 8 |  | crsp |  |-  RSpan | 
						
							| 9 | 5 8 | cfv |  |-  ( RSpan ` z ) | 
						
							| 10 | 1 | cv |  |-  n | 
						
							| 11 | 10 | csn |  |-  { n } | 
						
							| 12 | 11 9 | cfv |  |-  ( ( RSpan ` z ) ` { n } ) | 
						
							| 13 | 5 12 7 | co |  |-  ( z ~QG ( ( RSpan ` z ) ` { n } ) ) | 
						
							| 14 | 5 13 6 | co |  |-  ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) | 
						
							| 15 |  | vs |  |-  s | 
						
							| 16 | 15 | cv |  |-  s | 
						
							| 17 |  | csts |  |-  sSet | 
						
							| 18 |  | cple |  |-  le | 
						
							| 19 |  | cnx |  |-  ndx | 
						
							| 20 | 19 18 | cfv |  |-  ( le ` ndx ) | 
						
							| 21 |  | czrh |  |-  ZRHom | 
						
							| 22 | 16 21 | cfv |  |-  ( ZRHom ` s ) | 
						
							| 23 |  | cc0 |  |-  0 | 
						
							| 24 | 10 23 | wceq |  |-  n = 0 | 
						
							| 25 |  | cz |  |-  ZZ | 
						
							| 26 |  | cfzo |  |-  ..^ | 
						
							| 27 | 23 10 26 | co |  |-  ( 0 ..^ n ) | 
						
							| 28 | 24 25 27 | cif |  |-  if ( n = 0 , ZZ , ( 0 ..^ n ) ) | 
						
							| 29 | 22 28 | cres |  |-  ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) | 
						
							| 30 |  | vf |  |-  f | 
						
							| 31 | 30 | cv |  |-  f | 
						
							| 32 |  | cle |  |-  <_ | 
						
							| 33 | 31 32 | ccom |  |-  ( f o. <_ ) | 
						
							| 34 | 31 | ccnv |  |-  `' f | 
						
							| 35 | 33 34 | ccom |  |-  ( ( f o. <_ ) o. `' f ) | 
						
							| 36 | 30 29 35 | csb |  |-  [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) | 
						
							| 37 | 20 36 | cop |  |-  <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. | 
						
							| 38 | 16 37 17 | co |  |-  ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) | 
						
							| 39 | 15 14 38 | csb |  |-  [_ ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) / s ]_ ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) | 
						
							| 40 | 4 3 39 | csb |  |-  [_ ZZring / z ]_ [_ ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) / s ]_ ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) | 
						
							| 41 | 1 2 40 | cmpt |  |-  ( n e. NN0 |-> [_ ZZring / z ]_ [_ ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) / s ]_ ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) ) | 
						
							| 42 | 0 41 | wceq |  |-  Z/nZ = ( n e. NN0 |-> [_ ZZring / z ]_ [_ ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) / s ]_ ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) ) |