Metamath Proof Explorer


Theorem df0op2

Description: Alternate definition of Hilbert space zero operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion df0op2
|- 0hop = ( ~H X. 0H )

Proof

Step Hyp Ref Expression
1 ho0f
 |-  0hop : ~H --> ~H
2 ffn
 |-  ( 0hop : ~H --> ~H -> 0hop Fn ~H )
3 1 2 ax-mp
 |-  0hop Fn ~H
4 ho0val
 |-  ( x e. ~H -> ( 0hop ` x ) = 0h )
5 4 rgen
 |-  A. x e. ~H ( 0hop ` x ) = 0h
6 fconstfv
 |-  ( 0hop : ~H --> { 0h } <-> ( 0hop Fn ~H /\ A. x e. ~H ( 0hop ` x ) = 0h ) )
7 3 5 6 mpbir2an
 |-  0hop : ~H --> { 0h }
8 ax-hv0cl
 |-  0h e. ~H
9 8 elexi
 |-  0h e. _V
10 9 fconst2
 |-  ( 0hop : ~H --> { 0h } <-> 0hop = ( ~H X. { 0h } ) )
11 7 10 mpbi
 |-  0hop = ( ~H X. { 0h } )
12 df-ch0
 |-  0H = { 0h }
13 12 xpeq2i
 |-  ( ~H X. 0H ) = ( ~H X. { 0h } )
14 11 13 eqtr4i
 |-  0hop = ( ~H X. 0H )