Step |
Hyp |
Ref |
Expression |
1 |
|
ho0f |
|- 0hop : ~H --> ~H |
2 |
|
ffn |
|- ( 0hop : ~H --> ~H -> 0hop Fn ~H ) |
3 |
1 2
|
ax-mp |
|- 0hop Fn ~H |
4 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
5 |
4
|
rgen |
|- A. x e. ~H ( 0hop ` x ) = 0h |
6 |
|
fconstfv |
|- ( 0hop : ~H --> { 0h } <-> ( 0hop Fn ~H /\ A. x e. ~H ( 0hop ` x ) = 0h ) ) |
7 |
3 5 6
|
mpbir2an |
|- 0hop : ~H --> { 0h } |
8 |
|
ax-hv0cl |
|- 0h e. ~H |
9 |
8
|
elexi |
|- 0h e. _V |
10 |
9
|
fconst2 |
|- ( 0hop : ~H --> { 0h } <-> 0hop = ( ~H X. { 0h } ) ) |
11 |
7 10
|
mpbi |
|- 0hop = ( ~H X. { 0h } ) |
12 |
|
df-ch0 |
|- 0H = { 0h } |
13 |
12
|
xpeq2i |
|- ( ~H X. 0H ) = ( ~H X. { 0h } ) |
14 |
11 13
|
eqtr4i |
|- 0hop = ( ~H X. 0H ) |