| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iman |
|- ( ( ph -> ( ( ps -/\ ch ) /\ ( ps -/\ ch ) ) ) <-> -. ( ph /\ -. ( ( ps -/\ ch ) /\ ( ps -/\ ch ) ) ) ) |
| 2 |
|
imnan |
|- ( ( ps -> -. ch ) <-> -. ( ps /\ ch ) ) |
| 3 |
2
|
biimpi |
|- ( ( ps -> -. ch ) -> -. ( ps /\ ch ) ) |
| 4 |
3 3
|
jca |
|- ( ( ps -> -. ch ) -> ( -. ( ps /\ ch ) /\ -. ( ps /\ ch ) ) ) |
| 5 |
2
|
biimpri |
|- ( -. ( ps /\ ch ) -> ( ps -> -. ch ) ) |
| 6 |
5
|
adantl |
|- ( ( -. ( ps /\ ch ) /\ -. ( ps /\ ch ) ) -> ( ps -> -. ch ) ) |
| 7 |
4 6
|
impbii |
|- ( ( ps -> -. ch ) <-> ( -. ( ps /\ ch ) /\ -. ( ps /\ ch ) ) ) |
| 8 |
|
df-nan |
|- ( ( ps -/\ ch ) <-> -. ( ps /\ ch ) ) |
| 9 |
8 8
|
anbi12i |
|- ( ( ( ps -/\ ch ) /\ ( ps -/\ ch ) ) <-> ( -. ( ps /\ ch ) /\ -. ( ps /\ ch ) ) ) |
| 10 |
7 9
|
bitr4i |
|- ( ( ps -> -. ch ) <-> ( ( ps -/\ ch ) /\ ( ps -/\ ch ) ) ) |
| 11 |
10
|
imbi2i |
|- ( ( ph -> ( ps -> -. ch ) ) <-> ( ph -> ( ( ps -/\ ch ) /\ ( ps -/\ ch ) ) ) ) |
| 12 |
|
df-nan |
|- ( ( ( ps -/\ ch ) -/\ ( ps -/\ ch ) ) <-> -. ( ( ps -/\ ch ) /\ ( ps -/\ ch ) ) ) |
| 13 |
12
|
anbi2i |
|- ( ( ph /\ ( ( ps -/\ ch ) -/\ ( ps -/\ ch ) ) ) <-> ( ph /\ -. ( ( ps -/\ ch ) /\ ( ps -/\ ch ) ) ) ) |
| 14 |
13
|
notbii |
|- ( -. ( ph /\ ( ( ps -/\ ch ) -/\ ( ps -/\ ch ) ) ) <-> -. ( ph /\ -. ( ( ps -/\ ch ) /\ ( ps -/\ ch ) ) ) ) |
| 15 |
1 11 14
|
3bitr4i |
|- ( ( ph -> ( ps -> -. ch ) ) <-> -. ( ph /\ ( ( ps -/\ ch ) -/\ ( ps -/\ ch ) ) ) ) |
| 16 |
|
df-3nand |
|- ( ( ph -/\ ps -/\ ch ) <-> ( ph -> ( ps -> -. ch ) ) ) |
| 17 |
|
df-nan |
|- ( ( ph -/\ ( ( ps -/\ ch ) -/\ ( ps -/\ ch ) ) ) <-> -. ( ph /\ ( ( ps -/\ ch ) -/\ ( ps -/\ ch ) ) ) ) |
| 18 |
15 16 17
|
3bitr4i |
|- ( ( ph -/\ ps -/\ ch ) <-> ( ph -/\ ( ( ps -/\ ch ) -/\ ( ps -/\ ch ) ) ) ) |