Metamath Proof Explorer


Theorem df3nandALT2

Description: The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion df3nandALT2
|- ( ( ph -/\ ps -/\ ch ) <-> -. ( ph /\ ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 df-3nand
 |-  ( ( ph -/\ ps -/\ ch ) <-> ( ph -> ( ps -> -. ch ) ) )
2 imnan
 |-  ( ( ps -> -. ch ) <-> -. ( ps /\ ch ) )
3 2 imbi2i
 |-  ( ( ph -> ( ps -> -. ch ) ) <-> ( ph -> -. ( ps /\ ch ) ) )
4 imnan
 |-  ( ( ph -> -. ( ps /\ ch ) ) <-> -. ( ph /\ ( ps /\ ch ) ) )
5 3anass
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
6 4 5 xchbinxr
 |-  ( ( ph -> -. ( ps /\ ch ) ) <-> -. ( ph /\ ps /\ ch ) )
7 1 3 6 3bitri
 |-  ( ( ph -/\ ps -/\ ch ) <-> -. ( ph /\ ps /\ ch ) )