Metamath Proof Explorer


Theorem dfac10b

Description: Axiom of Choice equivalent: every set is equinumerous to an ordinal (quantifier-free short cryptic version alluded to in df-ac ). (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion dfac10b
|- ( CHOICE <-> ( ~~ " On ) = _V )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 elima
 |-  ( x e. ( ~~ " On ) <-> E. y e. On y ~~ x )
3 2 bicomi
 |-  ( E. y e. On y ~~ x <-> x e. ( ~~ " On ) )
4 3 albii
 |-  ( A. x E. y e. On y ~~ x <-> A. x x e. ( ~~ " On ) )
5 dfac10c
 |-  ( CHOICE <-> A. x E. y e. On y ~~ x )
6 eqv
 |-  ( ( ~~ " On ) = _V <-> A. x x e. ( ~~ " On ) )
7 4 5 6 3bitr4i
 |-  ( CHOICE <-> ( ~~ " On ) = _V )