Description: Axiom of Choice equivalent: every set is equinumerous to an ordinal. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac10c | |- ( CHOICE <-> A. x E. y e. On y ~~ x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac10 | |- ( CHOICE <-> dom card = _V ) |
|
| 2 | eqv | |- ( dom card = _V <-> A. x x e. dom card ) |
|
| 3 | isnum2 | |- ( x e. dom card <-> E. y e. On y ~~ x ) |
|
| 4 | 3 | albii | |- ( A. x x e. dom card <-> A. x E. y e. On y ~~ x ) |
| 5 | 1 2 4 | 3bitri | |- ( CHOICE <-> A. x E. y e. On y ~~ x ) |