Description: The right-hand side of this theorem (compare with ac4 ), sometimes known as the "axiom of multiple choice", is a choice equivalent. Curiously, this statement cannot be proved without ax-reg , despite not mentioning the cumulative hierarchy in any way as most consequences of regularity do.
This is definition (MC) of Schechter p. 141.EDITORIAL: the proof is not original with me of course but I lost my reference sometime after writing it.
A multiple choice function allows any total order to be extended to a choice function, which in turn defines a well-ordering. Since a well-ordering on a set defines a simple ordering of the power set, this allows the trivial well-ordering of the empty set to be transfinitely bootstrapped up the cumulative hierarchy to any desired level. (Contributed by Stefan O'Rear, 20-Jan-2015) (Revised by Stefan O'Rear, 1-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dfac11 | |- ( CHOICE <-> A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac3 | |- ( CHOICE <-> A. a E. c A. d e. a ( d =/= (/) -> ( c ` d ) e. d ) ) |
|
2 | raleq | |- ( a = x -> ( A. d e. a ( d =/= (/) -> ( c ` d ) e. d ) <-> A. d e. x ( d =/= (/) -> ( c ` d ) e. d ) ) ) |
|
3 | 2 | exbidv | |- ( a = x -> ( E. c A. d e. a ( d =/= (/) -> ( c ` d ) e. d ) <-> E. c A. d e. x ( d =/= (/) -> ( c ` d ) e. d ) ) ) |
4 | 3 | cbvalvw | |- ( A. a E. c A. d e. a ( d =/= (/) -> ( c ` d ) e. d ) <-> A. x E. c A. d e. x ( d =/= (/) -> ( c ` d ) e. d ) ) |
5 | neeq1 | |- ( d = z -> ( d =/= (/) <-> z =/= (/) ) ) |
|
6 | fveq2 | |- ( d = z -> ( c ` d ) = ( c ` z ) ) |
|
7 | id | |- ( d = z -> d = z ) |
|
8 | 6 7 | eleq12d | |- ( d = z -> ( ( c ` d ) e. d <-> ( c ` z ) e. z ) ) |
9 | 5 8 | imbi12d | |- ( d = z -> ( ( d =/= (/) -> ( c ` d ) e. d ) <-> ( z =/= (/) -> ( c ` z ) e. z ) ) ) |
10 | 9 | cbvralvw | |- ( A. d e. x ( d =/= (/) -> ( c ` d ) e. d ) <-> A. z e. x ( z =/= (/) -> ( c ` z ) e. z ) ) |
11 | fveq2 | |- ( b = z -> ( c ` b ) = ( c ` z ) ) |
|
12 | 11 | sneqd | |- ( b = z -> { ( c ` b ) } = { ( c ` z ) } ) |
13 | eqid | |- ( b e. x |-> { ( c ` b ) } ) = ( b e. x |-> { ( c ` b ) } ) |
|
14 | snex | |- { ( c ` z ) } e. _V |
|
15 | 12 13 14 | fvmpt | |- ( z e. x -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) = { ( c ` z ) } ) |
16 | 15 | 3ad2ant1 | |- ( ( z e. x /\ z =/= (/) /\ ( c ` z ) e. z ) -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) = { ( c ` z ) } ) |
17 | simp3 | |- ( ( z e. x /\ z =/= (/) /\ ( c ` z ) e. z ) -> ( c ` z ) e. z ) |
|
18 | 17 | snssd | |- ( ( z e. x /\ z =/= (/) /\ ( c ` z ) e. z ) -> { ( c ` z ) } C_ z ) |
19 | 14 | elpw | |- ( { ( c ` z ) } e. ~P z <-> { ( c ` z ) } C_ z ) |
20 | 18 19 | sylibr | |- ( ( z e. x /\ z =/= (/) /\ ( c ` z ) e. z ) -> { ( c ` z ) } e. ~P z ) |
21 | snfi | |- { ( c ` z ) } e. Fin |
|
22 | 21 | a1i | |- ( ( z e. x /\ z =/= (/) /\ ( c ` z ) e. z ) -> { ( c ` z ) } e. Fin ) |
23 | 20 22 | elind | |- ( ( z e. x /\ z =/= (/) /\ ( c ` z ) e. z ) -> { ( c ` z ) } e. ( ~P z i^i Fin ) ) |
24 | fvex | |- ( c ` z ) e. _V |
|
25 | 24 | snnz | |- { ( c ` z ) } =/= (/) |
26 | 25 | a1i | |- ( ( z e. x /\ z =/= (/) /\ ( c ` z ) e. z ) -> { ( c ` z ) } =/= (/) ) |
27 | eldifsn | |- ( { ( c ` z ) } e. ( ( ~P z i^i Fin ) \ { (/) } ) <-> ( { ( c ` z ) } e. ( ~P z i^i Fin ) /\ { ( c ` z ) } =/= (/) ) ) |
|
28 | 23 26 27 | sylanbrc | |- ( ( z e. x /\ z =/= (/) /\ ( c ` z ) e. z ) -> { ( c ` z ) } e. ( ( ~P z i^i Fin ) \ { (/) } ) ) |
29 | 16 28 | eqeltrd | |- ( ( z e. x /\ z =/= (/) /\ ( c ` z ) e. z ) -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) |
30 | 29 | 3exp | |- ( z e. x -> ( z =/= (/) -> ( ( c ` z ) e. z -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) ) |
31 | 30 | a2d | |- ( z e. x -> ( ( z =/= (/) -> ( c ` z ) e. z ) -> ( z =/= (/) -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) ) |
32 | 31 | ralimia | |- ( A. z e. x ( z =/= (/) -> ( c ` z ) e. z ) -> A. z e. x ( z =/= (/) -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
33 | 10 32 | sylbi | |- ( A. d e. x ( d =/= (/) -> ( c ` d ) e. d ) -> A. z e. x ( z =/= (/) -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
34 | vex | |- x e. _V |
|
35 | 34 | mptex | |- ( b e. x |-> { ( c ` b ) } ) e. _V |
36 | fveq1 | |- ( f = ( b e. x |-> { ( c ` b ) } ) -> ( f ` z ) = ( ( b e. x |-> { ( c ` b ) } ) ` z ) ) |
|
37 | 36 | eleq1d | |- ( f = ( b e. x |-> { ( c ` b ) } ) -> ( ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) <-> ( ( b e. x |-> { ( c ` b ) } ) ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
38 | 37 | imbi2d | |- ( f = ( b e. x |-> { ( c ` b ) } ) -> ( ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) <-> ( z =/= (/) -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) ) |
39 | 38 | ralbidv | |- ( f = ( b e. x |-> { ( c ` b ) } ) -> ( A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) <-> A. z e. x ( z =/= (/) -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) ) |
40 | 35 39 | spcev | |- ( A. z e. x ( z =/= (/) -> ( ( b e. x |-> { ( c ` b ) } ) ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) -> E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
41 | 33 40 | syl | |- ( A. d e. x ( d =/= (/) -> ( c ` d ) e. d ) -> E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
42 | 41 | exlimiv | |- ( E. c A. d e. x ( d =/= (/) -> ( c ` d ) e. d ) -> E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
43 | 42 | alimi | |- ( A. x E. c A. d e. x ( d =/= (/) -> ( c ` d ) e. d ) -> A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
44 | 4 43 | sylbi | |- ( A. a E. c A. d e. a ( d =/= (/) -> ( c ` d ) e. d ) -> A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
45 | 1 44 | sylbi | |- ( CHOICE -> A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
46 | fvex | |- ( R1 ` ( rank ` a ) ) e. _V |
|
47 | 46 | pwex | |- ~P ( R1 ` ( rank ` a ) ) e. _V |
48 | raleq | |- ( x = ~P ( R1 ` ( rank ` a ) ) -> ( A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) <-> A. z e. ~P ( R1 ` ( rank ` a ) ) ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) ) |
|
49 | 48 | exbidv | |- ( x = ~P ( R1 ` ( rank ` a ) ) -> ( E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) <-> E. f A. z e. ~P ( R1 ` ( rank ` a ) ) ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) ) |
50 | 47 49 | spcv | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) -> E. f A. z e. ~P ( R1 ` ( rank ` a ) ) ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
51 | rankon | |- ( rank ` a ) e. On |
|
52 | 51 | a1i | |- ( A. z e. ~P ( R1 ` ( rank ` a ) ) ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) -> ( rank ` a ) e. On ) |
53 | id | |- ( A. z e. ~P ( R1 ` ( rank ` a ) ) ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) -> A. z e. ~P ( R1 ` ( rank ` a ) ) ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |
|
54 | 52 53 | aomclem8 | |- ( A. z e. ~P ( R1 ` ( rank ` a ) ) ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) -> E. b b We ( R1 ` ( rank ` a ) ) ) |
55 | 54 | exlimiv | |- ( E. f A. z e. ~P ( R1 ` ( rank ` a ) ) ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) -> E. b b We ( R1 ` ( rank ` a ) ) ) |
56 | vex | |- a e. _V |
|
57 | r1rankid | |- ( a e. _V -> a C_ ( R1 ` ( rank ` a ) ) ) |
|
58 | wess | |- ( a C_ ( R1 ` ( rank ` a ) ) -> ( b We ( R1 ` ( rank ` a ) ) -> b We a ) ) |
|
59 | 58 | eximdv | |- ( a C_ ( R1 ` ( rank ` a ) ) -> ( E. b b We ( R1 ` ( rank ` a ) ) -> E. b b We a ) ) |
60 | 56 57 59 | mp2b | |- ( E. b b We ( R1 ` ( rank ` a ) ) -> E. b b We a ) |
61 | 50 55 60 | 3syl | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) -> E. b b We a ) |
62 | 61 | alrimiv | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) -> A. a E. b b We a ) |
63 | dfac8 | |- ( CHOICE <-> A. a E. b b We a ) |
|
64 | 62 63 | sylibr | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) -> CHOICE ) |
65 | 45 64 | impbii | |- ( CHOICE <-> A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. ( ( ~P z i^i Fin ) \ { (/) } ) ) ) |