Step |
Hyp |
Ref |
Expression |
1 |
|
ssv |
|- dom card C_ _V |
2 |
|
eqss |
|- ( dom card = _V <-> ( dom card C_ _V /\ _V C_ dom card ) ) |
3 |
1 2
|
mpbiran |
|- ( dom card = _V <-> _V C_ dom card ) |
4 |
|
dfac10 |
|- ( CHOICE <-> dom card = _V ) |
5 |
|
unir1 |
|- U. ( R1 " On ) = _V |
6 |
5
|
sseq1i |
|- ( U. ( R1 " On ) C_ dom card <-> _V C_ dom card ) |
7 |
3 4 6
|
3bitr4i |
|- ( CHOICE <-> U. ( R1 " On ) C_ dom card ) |
8 |
|
dfac12r |
|- ( A. x e. On ~P x e. dom card <-> U. ( R1 " On ) C_ dom card ) |
9 |
7 8
|
bitr4i |
|- ( CHOICE <-> A. x e. On ~P x e. dom card ) |