| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephon |
|- ( aleph ` y ) e. On |
| 2 |
|
pweq |
|- ( x = ( aleph ` y ) -> ~P x = ~P ( aleph ` y ) ) |
| 3 |
2
|
eleq1d |
|- ( x = ( aleph ` y ) -> ( ~P x e. dom card <-> ~P ( aleph ` y ) e. dom card ) ) |
| 4 |
3
|
rspcv |
|- ( ( aleph ` y ) e. On -> ( A. x e. On ~P x e. dom card -> ~P ( aleph ` y ) e. dom card ) ) |
| 5 |
1 4
|
ax-mp |
|- ( A. x e. On ~P x e. dom card -> ~P ( aleph ` y ) e. dom card ) |
| 6 |
5
|
ralrimivw |
|- ( A. x e. On ~P x e. dom card -> A. y e. On ~P ( aleph ` y ) e. dom card ) |
| 7 |
|
omelon |
|- _om e. On |
| 8 |
|
cardon |
|- ( card ` x ) e. On |
| 9 |
|
ontri1 |
|- ( ( _om e. On /\ ( card ` x ) e. On ) -> ( _om C_ ( card ` x ) <-> -. ( card ` x ) e. _om ) ) |
| 10 |
7 8 9
|
mp2an |
|- ( _om C_ ( card ` x ) <-> -. ( card ` x ) e. _om ) |
| 11 |
|
cardidm |
|- ( card ` ( card ` x ) ) = ( card ` x ) |
| 12 |
|
cardalephex |
|- ( _om C_ ( card ` x ) -> ( ( card ` ( card ` x ) ) = ( card ` x ) <-> E. y e. On ( card ` x ) = ( aleph ` y ) ) ) |
| 13 |
11 12
|
mpbii |
|- ( _om C_ ( card ` x ) -> E. y e. On ( card ` x ) = ( aleph ` y ) ) |
| 14 |
|
r19.29 |
|- ( ( A. y e. On ~P ( aleph ` y ) e. dom card /\ E. y e. On ( card ` x ) = ( aleph ` y ) ) -> E. y e. On ( ~P ( aleph ` y ) e. dom card /\ ( card ` x ) = ( aleph ` y ) ) ) |
| 15 |
|
pweq |
|- ( ( card ` x ) = ( aleph ` y ) -> ~P ( card ` x ) = ~P ( aleph ` y ) ) |
| 16 |
15
|
eleq1d |
|- ( ( card ` x ) = ( aleph ` y ) -> ( ~P ( card ` x ) e. dom card <-> ~P ( aleph ` y ) e. dom card ) ) |
| 17 |
16
|
biimparc |
|- ( ( ~P ( aleph ` y ) e. dom card /\ ( card ` x ) = ( aleph ` y ) ) -> ~P ( card ` x ) e. dom card ) |
| 18 |
17
|
rexlimivw |
|- ( E. y e. On ( ~P ( aleph ` y ) e. dom card /\ ( card ` x ) = ( aleph ` y ) ) -> ~P ( card ` x ) e. dom card ) |
| 19 |
14 18
|
syl |
|- ( ( A. y e. On ~P ( aleph ` y ) e. dom card /\ E. y e. On ( card ` x ) = ( aleph ` y ) ) -> ~P ( card ` x ) e. dom card ) |
| 20 |
19
|
ex |
|- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ( E. y e. On ( card ` x ) = ( aleph ` y ) -> ~P ( card ` x ) e. dom card ) ) |
| 21 |
13 20
|
syl5 |
|- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ( _om C_ ( card ` x ) -> ~P ( card ` x ) e. dom card ) ) |
| 22 |
10 21
|
biimtrrid |
|- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ( -. ( card ` x ) e. _om -> ~P ( card ` x ) e. dom card ) ) |
| 23 |
|
nnfi |
|- ( ( card ` x ) e. _om -> ( card ` x ) e. Fin ) |
| 24 |
|
pwfi |
|- ( ( card ` x ) e. Fin <-> ~P ( card ` x ) e. Fin ) |
| 25 |
23 24
|
sylib |
|- ( ( card ` x ) e. _om -> ~P ( card ` x ) e. Fin ) |
| 26 |
|
finnum |
|- ( ~P ( card ` x ) e. Fin -> ~P ( card ` x ) e. dom card ) |
| 27 |
25 26
|
syl |
|- ( ( card ` x ) e. _om -> ~P ( card ` x ) e. dom card ) |
| 28 |
22 27
|
pm2.61d2 |
|- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ~P ( card ` x ) e. dom card ) |
| 29 |
|
oncardid |
|- ( x e. On -> ( card ` x ) ~~ x ) |
| 30 |
|
pwen |
|- ( ( card ` x ) ~~ x -> ~P ( card ` x ) ~~ ~P x ) |
| 31 |
|
ennum |
|- ( ~P ( card ` x ) ~~ ~P x -> ( ~P ( card ` x ) e. dom card <-> ~P x e. dom card ) ) |
| 32 |
29 30 31
|
3syl |
|- ( x e. On -> ( ~P ( card ` x ) e. dom card <-> ~P x e. dom card ) ) |
| 33 |
28 32
|
syl5ibcom |
|- ( A. y e. On ~P ( aleph ` y ) e. dom card -> ( x e. On -> ~P x e. dom card ) ) |
| 34 |
33
|
ralrimiv |
|- ( A. y e. On ~P ( aleph ` y ) e. dom card -> A. x e. On ~P x e. dom card ) |
| 35 |
6 34
|
impbii |
|- ( A. x e. On ~P x e. dom card <-> A. y e. On ~P ( aleph ` y ) e. dom card ) |