| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfac12.1 | 
							 |-  ( ph -> A e. On )  | 
						
						
							| 2 | 
							
								
							 | 
							dfac12.3 | 
							 |-  ( ph -> F : ~P ( har ` ( R1 ` A ) ) -1-1-> On )  | 
						
						
							| 3 | 
							
								
							 | 
							dfac12.4 | 
							 |-  G = recs ( ( x e. _V |-> ( y e. ( R1 ` dom x ) |-> if ( dom x = U. dom x , ( ( suc U. ran U. ran x .o ( rank ` y ) ) +o ( ( x ` suc ( rank ` y ) ) ` y ) ) , ( F ` ( ( `' OrdIso ( _E , ran ( x ` U. dom x ) ) o. ( x ` U. dom x ) ) " y ) ) ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fvex | 
							 |-  ( G ` A ) e. _V  | 
						
						
							| 5 | 
							
								4
							 | 
							rnex | 
							 |-  ran ( G ` A ) e. _V  | 
						
						
							| 6 | 
							
								
							 | 
							ssid | 
							 |-  A C_ A  | 
						
						
							| 7 | 
							
								
							 | 
							sseq1 | 
							 |-  ( m = n -> ( m C_ A <-> n C_ A ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							 |-  ( m = n -> ( G ` m ) = ( G ` n ) )  | 
						
						
							| 9 | 
							
								
							 | 
							f1eq1 | 
							 |-  ( ( G ` m ) = ( G ` n ) -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` m ) -1-1-> On ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( m = n -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` m ) -1-1-> On ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							 |-  ( m = n -> ( R1 ` m ) = ( R1 ` n ) )  | 
						
						
							| 12 | 
							
								
							 | 
							f1eq2 | 
							 |-  ( ( R1 ` m ) = ( R1 ` n ) -> ( ( G ` n ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							 |-  ( m = n -> ( ( G ` n ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							bitrd | 
							 |-  ( m = n -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) )  | 
						
						
							| 15 | 
							
								7 14
							 | 
							imbi12d | 
							 |-  ( m = n -> ( ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) <-> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							imbi2d | 
							 |-  ( m = n -> ( ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) <-> ( ph -> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							sseq1 | 
							 |-  ( m = A -> ( m C_ A <-> A C_ A ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fveq2 | 
							 |-  ( m = A -> ( G ` m ) = ( G ` A ) )  | 
						
						
							| 19 | 
							
								
							 | 
							f1eq1 | 
							 |-  ( ( G ` m ) = ( G ` A ) -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` m ) -1-1-> On ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							 |-  ( m = A -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` m ) -1-1-> On ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq2 | 
							 |-  ( m = A -> ( R1 ` m ) = ( R1 ` A ) )  | 
						
						
							| 22 | 
							
								
							 | 
							f1eq2 | 
							 |-  ( ( R1 ` m ) = ( R1 ` A ) -> ( ( G ` A ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` A ) -1-1-> On ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							 |-  ( m = A -> ( ( G ` A ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` A ) -1-1-> On ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							bitrd | 
							 |-  ( m = A -> ( ( G ` m ) : ( R1 ` m ) -1-1-> On <-> ( G ` A ) : ( R1 ` A ) -1-1-> On ) )  | 
						
						
							| 25 | 
							
								17 24
							 | 
							imbi12d | 
							 |-  ( m = A -> ( ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) <-> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							imbi2d | 
							 |-  ( m = A -> ( ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) <-> ( ph -> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							r19.21v | 
							 |-  ( A. n e. m ( ph -> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) <-> ( ph -> A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eloni | 
							 |-  ( m e. On -> Ord m )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrl | 
							 |-  ( ( ph /\ ( m e. On /\ m C_ A ) ) -> Ord m )  | 
						
						
							| 30 | 
							
								
							 | 
							ordelss | 
							 |-  ( ( Ord m /\ n e. m ) -> n C_ m )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							sylan | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> n C_ m )  | 
						
						
							| 32 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> m C_ A )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							sstrd | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> n C_ A )  | 
						
						
							| 34 | 
							
								
							 | 
							pm5.5 | 
							 |-  ( n C_ A -> ( ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							syl | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ n e. m ) -> ( ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) <-> ( G ` n ) : ( R1 ` n ) -1-1-> On ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ralbidva | 
							 |-  ( ( ph /\ ( m e. On /\ m C_ A ) ) -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) <-> A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) )  | 
						
						
							| 37 | 
							
								1
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> A e. On )  | 
						
						
							| 38 | 
							
								2
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> F : ~P ( har ` ( R1 ` A ) ) -1-1-> On )  | 
						
						
							| 39 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> m e. On )  | 
						
						
							| 40 | 
							
								
							 | 
							eqid | 
							 |-  ( `' OrdIso ( _E , ran ( G ` U. m ) ) o. ( G ` U. m ) ) = ( `' OrdIso ( _E , ran ( G ` U. m ) ) o. ( G ` U. m ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> m C_ A )  | 
						
						
							| 42 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On )  | 
						
						
							| 43 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = z -> ( G ` n ) = ( G ` z ) )  | 
						
						
							| 44 | 
							
								
							 | 
							f1eq1 | 
							 |-  ( ( G ` n ) = ( G ` z ) -> ( ( G ` n ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` n ) -1-1-> On ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							syl | 
							 |-  ( n = z -> ( ( G ` n ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` n ) -1-1-> On ) )  | 
						
						
							| 46 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = z -> ( R1 ` n ) = ( R1 ` z ) )  | 
						
						
							| 47 | 
							
								
							 | 
							f1eq2 | 
							 |-  ( ( R1 ` n ) = ( R1 ` z ) -> ( ( G ` z ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` z ) -1-1-> On ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							 |-  ( n = z -> ( ( G ` z ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` z ) -1-1-> On ) )  | 
						
						
							| 49 | 
							
								45 48
							 | 
							bitrd | 
							 |-  ( n = z -> ( ( G ` n ) : ( R1 ` n ) -1-1-> On <-> ( G ` z ) : ( R1 ` z ) -1-1-> On ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							cbvralvw | 
							 |-  ( A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On <-> A. z e. m ( G ` z ) : ( R1 ` z ) -1-1-> On )  | 
						
						
							| 51 | 
							
								42 50
							 | 
							sylib | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> A. z e. m ( G ` z ) : ( R1 ` z ) -1-1-> On )  | 
						
						
							| 52 | 
							
								37 38 3 39 40 41 51
							 | 
							dfac12lem2 | 
							 |-  ( ( ( ph /\ ( m e. On /\ m C_ A ) ) /\ A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( G ` m ) : ( R1 ` m ) -1-1-> On )  | 
						
						
							| 53 | 
							
								52
							 | 
							ex | 
							 |-  ( ( ph /\ ( m e. On /\ m C_ A ) ) -> ( A. n e. m ( G ` n ) : ( R1 ` n ) -1-1-> On -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) )  | 
						
						
							| 54 | 
							
								36 53
							 | 
							sylbid | 
							 |-  ( ( ph /\ ( m e. On /\ m C_ A ) ) -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							expr | 
							 |-  ( ( ph /\ m e. On ) -> ( m C_ A -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							com23 | 
							 |-  ( ( ph /\ m e. On ) -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							expcom | 
							 |-  ( m e. On -> ( ph -> ( A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							a2d | 
							 |-  ( m e. On -> ( ( ph -> A. n e. m ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) -> ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) )  | 
						
						
							| 59 | 
							
								27 58
							 | 
							biimtrid | 
							 |-  ( m e. On -> ( A. n e. m ( ph -> ( n C_ A -> ( G ` n ) : ( R1 ` n ) -1-1-> On ) ) -> ( ph -> ( m C_ A -> ( G ` m ) : ( R1 ` m ) -1-1-> On ) ) ) )  | 
						
						
							| 60 | 
							
								16 26 59
							 | 
							tfis3 | 
							 |-  ( A e. On -> ( ph -> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) ) )  | 
						
						
							| 61 | 
							
								1 60
							 | 
							mpcom | 
							 |-  ( ph -> ( A C_ A -> ( G ` A ) : ( R1 ` A ) -1-1-> On ) )  | 
						
						
							| 62 | 
							
								6 61
							 | 
							mpi | 
							 |-  ( ph -> ( G ` A ) : ( R1 ` A ) -1-1-> On )  | 
						
						
							| 63 | 
							
								
							 | 
							f1f | 
							 |-  ( ( G ` A ) : ( R1 ` A ) -1-1-> On -> ( G ` A ) : ( R1 ` A ) --> On )  | 
						
						
							| 64 | 
							
								
							 | 
							frn | 
							 |-  ( ( G ` A ) : ( R1 ` A ) --> On -> ran ( G ` A ) C_ On )  | 
						
						
							| 65 | 
							
								62 63 64
							 | 
							3syl | 
							 |-  ( ph -> ran ( G ` A ) C_ On )  | 
						
						
							| 66 | 
							
								
							 | 
							onssnum | 
							 |-  ( ( ran ( G ` A ) e. _V /\ ran ( G ` A ) C_ On ) -> ran ( G ` A ) e. dom card )  | 
						
						
							| 67 | 
							
								5 65 66
							 | 
							sylancr | 
							 |-  ( ph -> ran ( G ` A ) e. dom card )  | 
						
						
							| 68 | 
							
								
							 | 
							f1f1orn | 
							 |-  ( ( G ` A ) : ( R1 ` A ) -1-1-> On -> ( G ` A ) : ( R1 ` A ) -1-1-onto-> ran ( G ` A ) )  | 
						
						
							| 69 | 
							
								62 68
							 | 
							syl | 
							 |-  ( ph -> ( G ` A ) : ( R1 ` A ) -1-1-onto-> ran ( G ` A ) )  | 
						
						
							| 70 | 
							
								
							 | 
							fvex | 
							 |-  ( R1 ` A ) e. _V  | 
						
						
							| 71 | 
							
								70
							 | 
							f1oen | 
							 |-  ( ( G ` A ) : ( R1 ` A ) -1-1-onto-> ran ( G ` A ) -> ( R1 ` A ) ~~ ran ( G ` A ) )  | 
						
						
							| 72 | 
							
								
							 | 
							ennum | 
							 |-  ( ( R1 ` A ) ~~ ran ( G ` A ) -> ( ( R1 ` A ) e. dom card <-> ran ( G ` A ) e. dom card ) )  | 
						
						
							| 73 | 
							
								69 71 72
							 | 
							3syl | 
							 |-  ( ph -> ( ( R1 ` A ) e. dom card <-> ran ( G ` A ) e. dom card ) )  | 
						
						
							| 74 | 
							
								67 73
							 | 
							mpbird | 
							 |-  ( ph -> ( R1 ` A ) e. dom card )  |