| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- x e. _V |
| 2 |
|
acacni |
|- ( ( CHOICE /\ x e. _V ) -> AC_ x = _V ) |
| 3 |
2
|
elvd |
|- ( CHOICE -> AC_ x = _V ) |
| 4 |
1 3
|
eleqtrrid |
|- ( CHOICE -> x e. AC_ x ) |
| 5 |
4
|
alrimiv |
|- ( CHOICE -> A. x x e. AC_ x ) |
| 6 |
|
vpwex |
|- ~P z e. _V |
| 7 |
|
id |
|- ( x = ~P z -> x = ~P z ) |
| 8 |
|
acneq |
|- ( x = ~P z -> AC_ x = AC_ ~P z ) |
| 9 |
7 8
|
eleq12d |
|- ( x = ~P z -> ( x e. AC_ x <-> ~P z e. AC_ ~P z ) ) |
| 10 |
6 9
|
spcv |
|- ( A. x x e. AC_ x -> ~P z e. AC_ ~P z ) |
| 11 |
|
vex |
|- y e. _V |
| 12 |
|
vex |
|- z e. _V |
| 13 |
12
|
canth2 |
|- z ~< ~P z |
| 14 |
|
sdomdom |
|- ( z ~< ~P z -> z ~<_ ~P z ) |
| 15 |
|
acndom2 |
|- ( z ~<_ ~P z -> ( ~P z e. AC_ ~P z -> z e. AC_ ~P z ) ) |
| 16 |
13 14 15
|
mp2b |
|- ( ~P z e. AC_ ~P z -> z e. AC_ ~P z ) |
| 17 |
|
acnnum |
|- ( z e. AC_ ~P z <-> z e. dom card ) |
| 18 |
16 17
|
sylib |
|- ( ~P z e. AC_ ~P z -> z e. dom card ) |
| 19 |
|
numacn |
|- ( y e. _V -> ( z e. dom card -> z e. AC_ y ) ) |
| 20 |
11 18 19
|
mpsyl |
|- ( ~P z e. AC_ ~P z -> z e. AC_ y ) |
| 21 |
10 20
|
syl |
|- ( A. x x e. AC_ x -> z e. AC_ y ) |
| 22 |
12
|
a1i |
|- ( A. x x e. AC_ x -> z e. _V ) |
| 23 |
21 22
|
2thd |
|- ( A. x x e. AC_ x -> ( z e. AC_ y <-> z e. _V ) ) |
| 24 |
23
|
eqrdv |
|- ( A. x x e. AC_ x -> AC_ y = _V ) |
| 25 |
24
|
alrimiv |
|- ( A. x x e. AC_ x -> A. y AC_ y = _V ) |
| 26 |
|
dfacacn |
|- ( CHOICE <-> A. y AC_ y = _V ) |
| 27 |
25 26
|
sylibr |
|- ( A. x x e. AC_ x -> CHOICE ) |
| 28 |
5 27
|
impbii |
|- ( CHOICE <-> A. x x e. AC_ x ) |