| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfac8alem.2 |  |-  F = recs ( G ) | 
						
							| 2 |  | dfac8alem.3 |  |-  G = ( f e. _V |-> ( g ` ( A \ ran f ) ) ) | 
						
							| 3 |  | elex |  |-  ( A e. C -> A e. _V ) | 
						
							| 4 |  | difss |  |-  ( A \ ( F " x ) ) C_ A | 
						
							| 5 |  | elpw2g |  |-  ( A e. _V -> ( ( A \ ( F " x ) ) e. ~P A <-> ( A \ ( F " x ) ) C_ A ) ) | 
						
							| 6 | 4 5 | mpbiri |  |-  ( A e. _V -> ( A \ ( F " x ) ) e. ~P A ) | 
						
							| 7 |  | neeq1 |  |-  ( y = ( A \ ( F " x ) ) -> ( y =/= (/) <-> ( A \ ( F " x ) ) =/= (/) ) ) | 
						
							| 8 |  | fveq2 |  |-  ( y = ( A \ ( F " x ) ) -> ( g ` y ) = ( g ` ( A \ ( F " x ) ) ) ) | 
						
							| 9 |  | id |  |-  ( y = ( A \ ( F " x ) ) -> y = ( A \ ( F " x ) ) ) | 
						
							| 10 | 8 9 | eleq12d |  |-  ( y = ( A \ ( F " x ) ) -> ( ( g ` y ) e. y <-> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) | 
						
							| 11 | 7 10 | imbi12d |  |-  ( y = ( A \ ( F " x ) ) -> ( ( y =/= (/) -> ( g ` y ) e. y ) <-> ( ( A \ ( F " x ) ) =/= (/) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) | 
						
							| 12 | 11 | rspcv |  |-  ( ( A \ ( F " x ) ) e. ~P A -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) | 
						
							| 13 | 6 12 | syl |  |-  ( A e. _V -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) | 
						
							| 14 | 13 | 3imp |  |-  ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) | 
						
							| 15 | 1 | tfr2 |  |-  ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) | 
						
							| 16 | 1 | tfr1 |  |-  F Fn On | 
						
							| 17 |  | fnfun |  |-  ( F Fn On -> Fun F ) | 
						
							| 18 | 16 17 | ax-mp |  |-  Fun F | 
						
							| 19 |  | vex |  |-  x e. _V | 
						
							| 20 |  | resfunexg |  |-  ( ( Fun F /\ x e. _V ) -> ( F |` x ) e. _V ) | 
						
							| 21 | 18 19 20 | mp2an |  |-  ( F |` x ) e. _V | 
						
							| 22 |  | rneq |  |-  ( f = ( F |` x ) -> ran f = ran ( F |` x ) ) | 
						
							| 23 |  | df-ima |  |-  ( F " x ) = ran ( F |` x ) | 
						
							| 24 | 22 23 | eqtr4di |  |-  ( f = ( F |` x ) -> ran f = ( F " x ) ) | 
						
							| 25 | 24 | difeq2d |  |-  ( f = ( F |` x ) -> ( A \ ran f ) = ( A \ ( F " x ) ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( f = ( F |` x ) -> ( g ` ( A \ ran f ) ) = ( g ` ( A \ ( F " x ) ) ) ) | 
						
							| 27 |  | fvex |  |-  ( g ` ( A \ ( F " x ) ) ) e. _V | 
						
							| 28 | 26 2 27 | fvmpt |  |-  ( ( F |` x ) e. _V -> ( G ` ( F |` x ) ) = ( g ` ( A \ ( F " x ) ) ) ) | 
						
							| 29 | 21 28 | ax-mp |  |-  ( G ` ( F |` x ) ) = ( g ` ( A \ ( F " x ) ) ) | 
						
							| 30 | 15 29 | eqtrdi |  |-  ( x e. On -> ( F ` x ) = ( g ` ( A \ ( F " x ) ) ) ) | 
						
							| 31 | 30 | eleq1d |  |-  ( x e. On -> ( ( F ` x ) e. ( A \ ( F " x ) ) <-> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) | 
						
							| 32 | 14 31 | syl5ibrcom |  |-  ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) | 
						
							| 33 | 32 | 3expia |  |-  ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) ) | 
						
							| 34 | 33 | com23 |  |-  ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) ) -> ( x e. On -> ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) ) | 
						
							| 35 | 34 | ralrimiv |  |-  ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) ) -> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) | 
						
							| 36 | 35 | ex |  |-  ( A e. _V -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) ) | 
						
							| 37 | 16 | tz7.49c |  |-  ( ( A e. _V /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) | 
						
							| 38 | 37 | ex |  |-  ( A e. _V -> ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) ) | 
						
							| 39 | 19 | f1oen |  |-  ( ( F |` x ) : x -1-1-onto-> A -> x ~~ A ) | 
						
							| 40 |  | isnumi |  |-  ( ( x e. On /\ x ~~ A ) -> A e. dom card ) | 
						
							| 41 | 39 40 | sylan2 |  |-  ( ( x e. On /\ ( F |` x ) : x -1-1-onto-> A ) -> A e. dom card ) | 
						
							| 42 | 41 | rexlimiva |  |-  ( E. x e. On ( F |` x ) : x -1-1-onto-> A -> A e. dom card ) | 
						
							| 43 | 38 42 | syl6 |  |-  ( A e. _V -> ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> A e. dom card ) ) | 
						
							| 44 | 36 43 | syld |  |-  ( A e. _V -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) | 
						
							| 45 | 3 44 | syl |  |-  ( A e. C -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) | 
						
							| 46 | 45 | exlimdv |  |-  ( A e. C -> ( E. g A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) |