Step |
Hyp |
Ref |
Expression |
1 |
|
cardid2 |
|- ( A e. dom card -> ( card ` A ) ~~ A ) |
2 |
|
bren |
|- ( ( card ` A ) ~~ A <-> E. f f : ( card ` A ) -1-1-onto-> A ) |
3 |
1 2
|
sylib |
|- ( A e. dom card -> E. f f : ( card ` A ) -1-1-onto-> A ) |
4 |
|
sqxpexg |
|- ( A e. dom card -> ( A X. A ) e. _V ) |
5 |
|
incom |
|- ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) = ( ( A X. A ) i^i { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } ) |
6 |
|
inex1g |
|- ( ( A X. A ) e. _V -> ( ( A X. A ) i^i { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } ) e. _V ) |
7 |
5 6
|
eqeltrid |
|- ( ( A X. A ) e. _V -> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) e. _V ) |
8 |
4 7
|
syl |
|- ( A e. dom card -> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) e. _V ) |
9 |
|
f1ocnv |
|- ( f : ( card ` A ) -1-1-onto-> A -> `' f : A -1-1-onto-> ( card ` A ) ) |
10 |
|
cardon |
|- ( card ` A ) e. On |
11 |
10
|
onordi |
|- Ord ( card ` A ) |
12 |
|
ordwe |
|- ( Ord ( card ` A ) -> _E We ( card ` A ) ) |
13 |
11 12
|
ax-mp |
|- _E We ( card ` A ) |
14 |
|
eqid |
|- { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } = { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } |
15 |
14
|
f1owe |
|- ( `' f : A -1-1-onto-> ( card ` A ) -> ( _E We ( card ` A ) -> { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } We A ) ) |
16 |
9 13 15
|
mpisyl |
|- ( f : ( card ` A ) -1-1-onto-> A -> { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } We A ) |
17 |
|
weinxp |
|- ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } We A <-> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) We A ) |
18 |
16 17
|
sylib |
|- ( f : ( card ` A ) -1-1-onto-> A -> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) We A ) |
19 |
|
weeq1 |
|- ( x = ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) -> ( x We A <-> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) We A ) ) |
20 |
19
|
spcegv |
|- ( ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) e. _V -> ( ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) We A -> E. x x We A ) ) |
21 |
8 18 20
|
syl2im |
|- ( A e. dom card -> ( f : ( card ` A ) -1-1-onto-> A -> E. x x We A ) ) |
22 |
21
|
exlimdv |
|- ( A e. dom card -> ( E. f f : ( card ` A ) -1-1-onto-> A -> E. x x We A ) ) |
23 |
3 22
|
mpd |
|- ( A e. dom card -> E. x x We A ) |