Step |
Hyp |
Ref |
Expression |
1 |
|
dfac3 |
|- ( CHOICE <-> A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
2 |
|
vex |
|- f e. _V |
3 |
2
|
rnex |
|- ran f e. _V |
4 |
|
raleq |
|- ( s = ran f -> ( A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) <-> A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) ) |
5 |
4
|
exbidv |
|- ( s = ran f -> ( E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) <-> E. g A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) ) |
6 |
3 5
|
spcv |
|- ( A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) -> E. g A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) |
7 |
|
df-nel |
|- ( (/) e/ ran f <-> -. (/) e. ran f ) |
8 |
7
|
biimpi |
|- ( (/) e/ ran f -> -. (/) e. ran f ) |
9 |
8
|
ad2antlr |
|- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> -. (/) e. ran f ) |
10 |
|
fvelrn |
|- ( ( Fun f /\ x e. dom f ) -> ( f ` x ) e. ran f ) |
11 |
10
|
adantlr |
|- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> ( f ` x ) e. ran f ) |
12 |
|
eleq1 |
|- ( ( f ` x ) = (/) -> ( ( f ` x ) e. ran f <-> (/) e. ran f ) ) |
13 |
11 12
|
syl5ibcom |
|- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> ( ( f ` x ) = (/) -> (/) e. ran f ) ) |
14 |
13
|
necon3bd |
|- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> ( -. (/) e. ran f -> ( f ` x ) =/= (/) ) ) |
15 |
9 14
|
mpd |
|- ( ( ( Fun f /\ (/) e/ ran f ) /\ x e. dom f ) -> ( f ` x ) =/= (/) ) |
16 |
15
|
adantlr |
|- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> ( f ` x ) =/= (/) ) |
17 |
|
neeq1 |
|- ( t = ( f ` x ) -> ( t =/= (/) <-> ( f ` x ) =/= (/) ) ) |
18 |
|
fveq2 |
|- ( t = ( f ` x ) -> ( g ` t ) = ( g ` ( f ` x ) ) ) |
19 |
|
id |
|- ( t = ( f ` x ) -> t = ( f ` x ) ) |
20 |
18 19
|
eleq12d |
|- ( t = ( f ` x ) -> ( ( g ` t ) e. t <-> ( g ` ( f ` x ) ) e. ( f ` x ) ) ) |
21 |
17 20
|
imbi12d |
|- ( t = ( f ` x ) -> ( ( t =/= (/) -> ( g ` t ) e. t ) <-> ( ( f ` x ) =/= (/) -> ( g ` ( f ` x ) ) e. ( f ` x ) ) ) ) |
22 |
|
simplr |
|- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) |
23 |
10
|
ad4ant14 |
|- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> ( f ` x ) e. ran f ) |
24 |
21 22 23
|
rspcdva |
|- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> ( ( f ` x ) =/= (/) -> ( g ` ( f ` x ) ) e. ( f ` x ) ) ) |
25 |
16 24
|
mpd |
|- ( ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) /\ x e. dom f ) -> ( g ` ( f ` x ) ) e. ( f ` x ) ) |
26 |
25
|
ralrimiva |
|- ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) -> A. x e. dom f ( g ` ( f ` x ) ) e. ( f ` x ) ) |
27 |
2
|
dmex |
|- dom f e. _V |
28 |
|
mptelixpg |
|- ( dom f e. _V -> ( ( x e. dom f |-> ( g ` ( f ` x ) ) ) e. X_ x e. dom f ( f ` x ) <-> A. x e. dom f ( g ` ( f ` x ) ) e. ( f ` x ) ) ) |
29 |
27 28
|
ax-mp |
|- ( ( x e. dom f |-> ( g ` ( f ` x ) ) ) e. X_ x e. dom f ( f ` x ) <-> A. x e. dom f ( g ` ( f ` x ) ) e. ( f ` x ) ) |
30 |
26 29
|
sylibr |
|- ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) -> ( x e. dom f |-> ( g ` ( f ` x ) ) ) e. X_ x e. dom f ( f ` x ) ) |
31 |
30
|
ne0d |
|- ( ( ( Fun f /\ (/) e/ ran f ) /\ A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) ) -> X_ x e. dom f ( f ` x ) =/= (/) ) |
32 |
31
|
ex |
|- ( ( Fun f /\ (/) e/ ran f ) -> ( A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
33 |
32
|
exlimdv |
|- ( ( Fun f /\ (/) e/ ran f ) -> ( E. g A. t e. ran f ( t =/= (/) -> ( g ` t ) e. t ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
34 |
6 33
|
syl5com |
|- ( A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) -> ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
35 |
34
|
alrimiv |
|- ( A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) -> A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
36 |
|
fnresi |
|- ( _I |` ( s \ { (/) } ) ) Fn ( s \ { (/) } ) |
37 |
|
fnfun |
|- ( ( _I |` ( s \ { (/) } ) ) Fn ( s \ { (/) } ) -> Fun ( _I |` ( s \ { (/) } ) ) ) |
38 |
36 37
|
ax-mp |
|- Fun ( _I |` ( s \ { (/) } ) ) |
39 |
|
neldifsn |
|- -. (/) e. ( s \ { (/) } ) |
40 |
|
vex |
|- s e. _V |
41 |
40
|
difexi |
|- ( s \ { (/) } ) e. _V |
42 |
|
resiexg |
|- ( ( s \ { (/) } ) e. _V -> ( _I |` ( s \ { (/) } ) ) e. _V ) |
43 |
41 42
|
ax-mp |
|- ( _I |` ( s \ { (/) } ) ) e. _V |
44 |
|
funeq |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ( Fun f <-> Fun ( _I |` ( s \ { (/) } ) ) ) ) |
45 |
|
rneq |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ran f = ran ( _I |` ( s \ { (/) } ) ) ) |
46 |
|
rnresi |
|- ran ( _I |` ( s \ { (/) } ) ) = ( s \ { (/) } ) |
47 |
45 46
|
eqtrdi |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ran f = ( s \ { (/) } ) ) |
48 |
47
|
eleq2d |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ( (/) e. ran f <-> (/) e. ( s \ { (/) } ) ) ) |
49 |
48
|
notbid |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ( -. (/) e. ran f <-> -. (/) e. ( s \ { (/) } ) ) ) |
50 |
7 49
|
syl5bb |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ( (/) e/ ran f <-> -. (/) e. ( s \ { (/) } ) ) ) |
51 |
44 50
|
anbi12d |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ( ( Fun f /\ (/) e/ ran f ) <-> ( Fun ( _I |` ( s \ { (/) } ) ) /\ -. (/) e. ( s \ { (/) } ) ) ) ) |
52 |
|
dmeq |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> dom f = dom ( _I |` ( s \ { (/) } ) ) ) |
53 |
|
dmresi |
|- dom ( _I |` ( s \ { (/) } ) ) = ( s \ { (/) } ) |
54 |
52 53
|
eqtrdi |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> dom f = ( s \ { (/) } ) ) |
55 |
54
|
ixpeq1d |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> X_ x e. dom f ( f ` x ) = X_ x e. ( s \ { (/) } ) ( f ` x ) ) |
56 |
|
fveq1 |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ( f ` x ) = ( ( _I |` ( s \ { (/) } ) ) ` x ) ) |
57 |
|
fvresi |
|- ( x e. ( s \ { (/) } ) -> ( ( _I |` ( s \ { (/) } ) ) ` x ) = x ) |
58 |
56 57
|
sylan9eq |
|- ( ( f = ( _I |` ( s \ { (/) } ) ) /\ x e. ( s \ { (/) } ) ) -> ( f ` x ) = x ) |
59 |
58
|
ixpeq2dva |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> X_ x e. ( s \ { (/) } ) ( f ` x ) = X_ x e. ( s \ { (/) } ) x ) |
60 |
55 59
|
eqtrd |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> X_ x e. dom f ( f ` x ) = X_ x e. ( s \ { (/) } ) x ) |
61 |
60
|
neeq1d |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ( X_ x e. dom f ( f ` x ) =/= (/) <-> X_ x e. ( s \ { (/) } ) x =/= (/) ) ) |
62 |
51 61
|
imbi12d |
|- ( f = ( _I |` ( s \ { (/) } ) ) -> ( ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) <-> ( ( Fun ( _I |` ( s \ { (/) } ) ) /\ -. (/) e. ( s \ { (/) } ) ) -> X_ x e. ( s \ { (/) } ) x =/= (/) ) ) ) |
63 |
43 62
|
spcv |
|- ( A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) -> ( ( Fun ( _I |` ( s \ { (/) } ) ) /\ -. (/) e. ( s \ { (/) } ) ) -> X_ x e. ( s \ { (/) } ) x =/= (/) ) ) |
64 |
38 39 63
|
mp2ani |
|- ( A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) -> X_ x e. ( s \ { (/) } ) x =/= (/) ) |
65 |
|
n0 |
|- ( X_ x e. ( s \ { (/) } ) x =/= (/) <-> E. g g e. X_ x e. ( s \ { (/) } ) x ) |
66 |
|
vex |
|- g e. _V |
67 |
66
|
elixp |
|- ( g e. X_ x e. ( s \ { (/) } ) x <-> ( g Fn ( s \ { (/) } ) /\ A. x e. ( s \ { (/) } ) ( g ` x ) e. x ) ) |
68 |
|
eldifsn |
|- ( x e. ( s \ { (/) } ) <-> ( x e. s /\ x =/= (/) ) ) |
69 |
68
|
imbi1i |
|- ( ( x e. ( s \ { (/) } ) -> ( g ` x ) e. x ) <-> ( ( x e. s /\ x =/= (/) ) -> ( g ` x ) e. x ) ) |
70 |
|
impexp |
|- ( ( ( x e. s /\ x =/= (/) ) -> ( g ` x ) e. x ) <-> ( x e. s -> ( x =/= (/) -> ( g ` x ) e. x ) ) ) |
71 |
69 70
|
bitri |
|- ( ( x e. ( s \ { (/) } ) -> ( g ` x ) e. x ) <-> ( x e. s -> ( x =/= (/) -> ( g ` x ) e. x ) ) ) |
72 |
71
|
ralbii2 |
|- ( A. x e. ( s \ { (/) } ) ( g ` x ) e. x <-> A. x e. s ( x =/= (/) -> ( g ` x ) e. x ) ) |
73 |
|
neeq1 |
|- ( x = t -> ( x =/= (/) <-> t =/= (/) ) ) |
74 |
|
fveq2 |
|- ( x = t -> ( g ` x ) = ( g ` t ) ) |
75 |
|
id |
|- ( x = t -> x = t ) |
76 |
74 75
|
eleq12d |
|- ( x = t -> ( ( g ` x ) e. x <-> ( g ` t ) e. t ) ) |
77 |
73 76
|
imbi12d |
|- ( x = t -> ( ( x =/= (/) -> ( g ` x ) e. x ) <-> ( t =/= (/) -> ( g ` t ) e. t ) ) ) |
78 |
77
|
cbvralvw |
|- ( A. x e. s ( x =/= (/) -> ( g ` x ) e. x ) <-> A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
79 |
72 78
|
bitri |
|- ( A. x e. ( s \ { (/) } ) ( g ` x ) e. x <-> A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
80 |
79
|
biimpi |
|- ( A. x e. ( s \ { (/) } ) ( g ` x ) e. x -> A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
81 |
67 80
|
simplbiim |
|- ( g e. X_ x e. ( s \ { (/) } ) x -> A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
82 |
81
|
eximi |
|- ( E. g g e. X_ x e. ( s \ { (/) } ) x -> E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
83 |
65 82
|
sylbi |
|- ( X_ x e. ( s \ { (/) } ) x =/= (/) -> E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
84 |
64 83
|
syl |
|- ( A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) -> E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
85 |
84
|
alrimiv |
|- ( A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) -> A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) ) |
86 |
35 85
|
impbii |
|- ( A. s E. g A. t e. s ( t =/= (/) -> ( g ` t ) e. t ) <-> A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |
87 |
1 86
|
bitri |
|- ( CHOICE <-> A. f ( ( Fun f /\ (/) e/ ran f ) -> X_ x e. dom f ( f ` x ) =/= (/) ) ) |