| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssequn2 |
|- ( ( _V \ dom card ) C_ Fin <-> ( Fin u. ( _V \ dom card ) ) = Fin ) |
| 2 |
|
dfac10 |
|- ( CHOICE <-> dom card = _V ) |
| 3 |
|
finnum |
|- ( x e. Fin -> x e. dom card ) |
| 4 |
3
|
ssriv |
|- Fin C_ dom card |
| 5 |
|
ssequn2 |
|- ( Fin C_ dom card <-> ( dom card u. Fin ) = dom card ) |
| 6 |
4 5
|
mpbi |
|- ( dom card u. Fin ) = dom card |
| 7 |
6
|
eqeq1i |
|- ( ( dom card u. Fin ) = _V <-> dom card = _V ) |
| 8 |
2 7
|
bitr4i |
|- ( CHOICE <-> ( dom card u. Fin ) = _V ) |
| 9 |
|
ssv |
|- ( dom card u. Fin ) C_ _V |
| 10 |
|
eqss |
|- ( ( dom card u. Fin ) = _V <-> ( ( dom card u. Fin ) C_ _V /\ _V C_ ( dom card u. Fin ) ) ) |
| 11 |
9 10
|
mpbiran |
|- ( ( dom card u. Fin ) = _V <-> _V C_ ( dom card u. Fin ) ) |
| 12 |
|
ssundif |
|- ( _V C_ ( dom card u. Fin ) <-> ( _V \ dom card ) C_ Fin ) |
| 13 |
8 11 12
|
3bitri |
|- ( CHOICE <-> ( _V \ dom card ) C_ Fin ) |
| 14 |
|
dffin7-2 |
|- Fin7 = ( Fin u. ( _V \ dom card ) ) |
| 15 |
14
|
eqeq1i |
|- ( Fin7 = Fin <-> ( Fin u. ( _V \ dom card ) ) = Fin ) |
| 16 |
1 13 15
|
3bitr4i |
|- ( CHOICE <-> Fin7 = Fin ) |