Metamath Proof Explorer


Theorem dfbi2

Description: A theorem similar to the standard definition of the biconditional. Definition of Margaris p. 49. (Contributed by NM, 24-Jan-1993)

Ref Expression
Assertion dfbi2
|- ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) )

Proof

Step Hyp Ref Expression
1 dfbi1
 |-  ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) )
2 df-an
 |-  ( ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) )
3 1 2 bitr4i
 |-  ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) )