Metamath Proof Explorer


Theorem dfbi3

Description: An alternate definition of the biconditional. Theorem *5.23 of WhiteheadRussell p. 124. (Contributed by NM, 27-Jun-2002) (Proof shortened by Wolf Lammen, 3-Nov-2013) (Proof shortened by NM, 29-Oct-2021)

Ref Expression
Assertion dfbi3
|- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) )

Proof

Step Hyp Ref Expression
1 con34b
 |-  ( ( ps -> ph ) <-> ( -. ph -> -. ps ) )
2 1 anbi2i
 |-  ( ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( ( ph -> ps ) /\ ( -. ph -> -. ps ) ) )
3 dfbi2
 |-  ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) )
4 cases2
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( ( ph -> ps ) /\ ( -. ph -> -. ps ) ) )
5 2 3 4 3bitr4i
 |-  ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) )