| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ceil |  |-  |^ = ( x e. RR |-> -u ( |_ ` -u x ) ) | 
						
							| 2 |  | zre |  |-  ( z e. ZZ -> z e. RR ) | 
						
							| 3 |  | lenegcon2 |  |-  ( ( x e. RR /\ z e. RR ) -> ( x <_ -u z <-> z <_ -u x ) ) | 
						
							| 4 |  | peano2re |  |-  ( x e. RR -> ( x + 1 ) e. RR ) | 
						
							| 5 | 4 | anim1ci |  |-  ( ( x e. RR /\ z e. RR ) -> ( z e. RR /\ ( x + 1 ) e. RR ) ) | 
						
							| 6 |  | ltnegcon1 |  |-  ( ( z e. RR /\ ( x + 1 ) e. RR ) -> ( -u z < ( x + 1 ) <-> -u ( x + 1 ) < z ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( x e. RR /\ z e. RR ) -> ( -u z < ( x + 1 ) <-> -u ( x + 1 ) < z ) ) | 
						
							| 8 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 9 |  | 1cnd |  |-  ( x e. RR -> 1 e. CC ) | 
						
							| 10 | 8 9 | negdid |  |-  ( x e. RR -> -u ( x + 1 ) = ( -u x + -u 1 ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( x e. RR /\ z e. RR ) -> -u ( x + 1 ) = ( -u x + -u 1 ) ) | 
						
							| 12 | 11 | breq1d |  |-  ( ( x e. RR /\ z e. RR ) -> ( -u ( x + 1 ) < z <-> ( -u x + -u 1 ) < z ) ) | 
						
							| 13 |  | renegcl |  |-  ( x e. RR -> -u x e. RR ) | 
						
							| 14 | 13 | adantr |  |-  ( ( x e. RR /\ z e. RR ) -> -u x e. RR ) | 
						
							| 15 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 16 | 15 | a1i |  |-  ( ( x e. RR /\ z e. RR ) -> -u 1 e. RR ) | 
						
							| 17 |  | simpr |  |-  ( ( x e. RR /\ z e. RR ) -> z e. RR ) | 
						
							| 18 | 14 16 17 | ltaddsubd |  |-  ( ( x e. RR /\ z e. RR ) -> ( ( -u x + -u 1 ) < z <-> -u x < ( z - -u 1 ) ) ) | 
						
							| 19 |  | recn |  |-  ( z e. RR -> z e. CC ) | 
						
							| 20 |  | 1cnd |  |-  ( z e. RR -> 1 e. CC ) | 
						
							| 21 | 19 20 | subnegd |  |-  ( z e. RR -> ( z - -u 1 ) = ( z + 1 ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( x e. RR /\ z e. RR ) -> ( z - -u 1 ) = ( z + 1 ) ) | 
						
							| 23 | 22 | breq2d |  |-  ( ( x e. RR /\ z e. RR ) -> ( -u x < ( z - -u 1 ) <-> -u x < ( z + 1 ) ) ) | 
						
							| 24 | 18 23 | bitrd |  |-  ( ( x e. RR /\ z e. RR ) -> ( ( -u x + -u 1 ) < z <-> -u x < ( z + 1 ) ) ) | 
						
							| 25 | 7 12 24 | 3bitrd |  |-  ( ( x e. RR /\ z e. RR ) -> ( -u z < ( x + 1 ) <-> -u x < ( z + 1 ) ) ) | 
						
							| 26 | 3 25 | anbi12d |  |-  ( ( x e. RR /\ z e. RR ) -> ( ( x <_ -u z /\ -u z < ( x + 1 ) ) <-> ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) | 
						
							| 27 | 2 26 | sylan2 |  |-  ( ( x e. RR /\ z e. ZZ ) -> ( ( x <_ -u z /\ -u z < ( x + 1 ) ) <-> ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) | 
						
							| 28 | 27 | riotabidva |  |-  ( x e. RR -> ( iota_ z e. ZZ ( x <_ -u z /\ -u z < ( x + 1 ) ) ) = ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) | 
						
							| 29 | 28 | negeqd |  |-  ( x e. RR -> -u ( iota_ z e. ZZ ( x <_ -u z /\ -u z < ( x + 1 ) ) ) = -u ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) | 
						
							| 30 |  | zbtwnre |  |-  ( x e. RR -> E! y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) | 
						
							| 31 |  | breq2 |  |-  ( y = -u z -> ( x <_ y <-> x <_ -u z ) ) | 
						
							| 32 |  | breq1 |  |-  ( y = -u z -> ( y < ( x + 1 ) <-> -u z < ( x + 1 ) ) ) | 
						
							| 33 | 31 32 | anbi12d |  |-  ( y = -u z -> ( ( x <_ y /\ y < ( x + 1 ) ) <-> ( x <_ -u z /\ -u z < ( x + 1 ) ) ) ) | 
						
							| 34 | 33 | zriotaneg |  |-  ( E! y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) -> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) = -u ( iota_ z e. ZZ ( x <_ -u z /\ -u z < ( x + 1 ) ) ) ) | 
						
							| 35 | 30 34 | syl |  |-  ( x e. RR -> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) = -u ( iota_ z e. ZZ ( x <_ -u z /\ -u z < ( x + 1 ) ) ) ) | 
						
							| 36 |  | flval |  |-  ( -u x e. RR -> ( |_ ` -u x ) = ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) | 
						
							| 37 | 13 36 | syl |  |-  ( x e. RR -> ( |_ ` -u x ) = ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) | 
						
							| 38 | 37 | negeqd |  |-  ( x e. RR -> -u ( |_ ` -u x ) = -u ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) | 
						
							| 39 | 29 35 38 | 3eqtr4rd |  |-  ( x e. RR -> -u ( |_ ` -u x ) = ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) ) | 
						
							| 40 | 39 | mpteq2ia |  |-  ( x e. RR |-> -u ( |_ ` -u x ) ) = ( x e. RR |-> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) ) | 
						
							| 41 | 1 40 | eqtri |  |-  |^ = ( x e. RR |-> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) ) |