Step |
Hyp |
Ref |
Expression |
1 |
|
df-ceil |
|- |^ = ( x e. RR |-> -u ( |_ ` -u x ) ) |
2 |
|
zre |
|- ( z e. ZZ -> z e. RR ) |
3 |
|
lenegcon2 |
|- ( ( x e. RR /\ z e. RR ) -> ( x <_ -u z <-> z <_ -u x ) ) |
4 |
|
peano2re |
|- ( x e. RR -> ( x + 1 ) e. RR ) |
5 |
4
|
anim1ci |
|- ( ( x e. RR /\ z e. RR ) -> ( z e. RR /\ ( x + 1 ) e. RR ) ) |
6 |
|
ltnegcon1 |
|- ( ( z e. RR /\ ( x + 1 ) e. RR ) -> ( -u z < ( x + 1 ) <-> -u ( x + 1 ) < z ) ) |
7 |
5 6
|
syl |
|- ( ( x e. RR /\ z e. RR ) -> ( -u z < ( x + 1 ) <-> -u ( x + 1 ) < z ) ) |
8 |
|
recn |
|- ( x e. RR -> x e. CC ) |
9 |
|
1cnd |
|- ( x e. RR -> 1 e. CC ) |
10 |
8 9
|
negdid |
|- ( x e. RR -> -u ( x + 1 ) = ( -u x + -u 1 ) ) |
11 |
10
|
adantr |
|- ( ( x e. RR /\ z e. RR ) -> -u ( x + 1 ) = ( -u x + -u 1 ) ) |
12 |
11
|
breq1d |
|- ( ( x e. RR /\ z e. RR ) -> ( -u ( x + 1 ) < z <-> ( -u x + -u 1 ) < z ) ) |
13 |
|
renegcl |
|- ( x e. RR -> -u x e. RR ) |
14 |
13
|
adantr |
|- ( ( x e. RR /\ z e. RR ) -> -u x e. RR ) |
15 |
|
neg1rr |
|- -u 1 e. RR |
16 |
15
|
a1i |
|- ( ( x e. RR /\ z e. RR ) -> -u 1 e. RR ) |
17 |
|
simpr |
|- ( ( x e. RR /\ z e. RR ) -> z e. RR ) |
18 |
14 16 17
|
ltaddsubd |
|- ( ( x e. RR /\ z e. RR ) -> ( ( -u x + -u 1 ) < z <-> -u x < ( z - -u 1 ) ) ) |
19 |
|
recn |
|- ( z e. RR -> z e. CC ) |
20 |
|
1cnd |
|- ( z e. RR -> 1 e. CC ) |
21 |
19 20
|
subnegd |
|- ( z e. RR -> ( z - -u 1 ) = ( z + 1 ) ) |
22 |
21
|
adantl |
|- ( ( x e. RR /\ z e. RR ) -> ( z - -u 1 ) = ( z + 1 ) ) |
23 |
22
|
breq2d |
|- ( ( x e. RR /\ z e. RR ) -> ( -u x < ( z - -u 1 ) <-> -u x < ( z + 1 ) ) ) |
24 |
18 23
|
bitrd |
|- ( ( x e. RR /\ z e. RR ) -> ( ( -u x + -u 1 ) < z <-> -u x < ( z + 1 ) ) ) |
25 |
7 12 24
|
3bitrd |
|- ( ( x e. RR /\ z e. RR ) -> ( -u z < ( x + 1 ) <-> -u x < ( z + 1 ) ) ) |
26 |
3 25
|
anbi12d |
|- ( ( x e. RR /\ z e. RR ) -> ( ( x <_ -u z /\ -u z < ( x + 1 ) ) <-> ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) |
27 |
2 26
|
sylan2 |
|- ( ( x e. RR /\ z e. ZZ ) -> ( ( x <_ -u z /\ -u z < ( x + 1 ) ) <-> ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) |
28 |
27
|
riotabidva |
|- ( x e. RR -> ( iota_ z e. ZZ ( x <_ -u z /\ -u z < ( x + 1 ) ) ) = ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) |
29 |
28
|
negeqd |
|- ( x e. RR -> -u ( iota_ z e. ZZ ( x <_ -u z /\ -u z < ( x + 1 ) ) ) = -u ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) |
30 |
|
zbtwnre |
|- ( x e. RR -> E! y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) |
31 |
|
breq2 |
|- ( y = -u z -> ( x <_ y <-> x <_ -u z ) ) |
32 |
|
breq1 |
|- ( y = -u z -> ( y < ( x + 1 ) <-> -u z < ( x + 1 ) ) ) |
33 |
31 32
|
anbi12d |
|- ( y = -u z -> ( ( x <_ y /\ y < ( x + 1 ) ) <-> ( x <_ -u z /\ -u z < ( x + 1 ) ) ) ) |
34 |
33
|
zriotaneg |
|- ( E! y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) -> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) = -u ( iota_ z e. ZZ ( x <_ -u z /\ -u z < ( x + 1 ) ) ) ) |
35 |
30 34
|
syl |
|- ( x e. RR -> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) = -u ( iota_ z e. ZZ ( x <_ -u z /\ -u z < ( x + 1 ) ) ) ) |
36 |
|
flval |
|- ( -u x e. RR -> ( |_ ` -u x ) = ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) |
37 |
13 36
|
syl |
|- ( x e. RR -> ( |_ ` -u x ) = ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) |
38 |
37
|
negeqd |
|- ( x e. RR -> -u ( |_ ` -u x ) = -u ( iota_ z e. ZZ ( z <_ -u x /\ -u x < ( z + 1 ) ) ) ) |
39 |
29 35 38
|
3eqtr4rd |
|- ( x e. RR -> -u ( |_ ` -u x ) = ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) ) |
40 |
39
|
mpteq2ia |
|- ( x e. RR |-> -u ( |_ ` -u x ) ) = ( x e. RR |-> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) ) |
41 |
1 40
|
eqtri |
|- |^ = ( x e. RR |-> ( iota_ y e. ZZ ( x <_ y /\ y < ( x + 1 ) ) ) ) |