| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcgrg2.p |
|- P = ( Base ` G ) |
| 2 |
|
dfcgrg2.m |
|- .- = ( dist ` G ) |
| 3 |
|
dfcgrg2.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
dfcgrg2.a |
|- ( ph -> A e. P ) |
| 5 |
|
dfcgrg2.b |
|- ( ph -> B e. P ) |
| 6 |
|
dfcgrg2.c |
|- ( ph -> C e. P ) |
| 7 |
|
dfcgrg2.d |
|- ( ph -> D e. P ) |
| 8 |
|
dfcgrg2.e |
|- ( ph -> E e. P ) |
| 9 |
|
dfcgrg2.f |
|- ( ph -> F e. P ) |
| 10 |
|
dfcgrg2.1 |
|- ( ph -> A =/= B ) |
| 11 |
|
dfcgrg2.2 |
|- ( ph -> B =/= C ) |
| 12 |
|
dfcgrg2.3 |
|- ( ph -> C =/= A ) |
| 13 |
|
eqid |
|- ( Itv ` G ) = ( Itv ` G ) |
| 14 |
3
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> G e. TarskiG ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> A e. P ) |
| 16 |
5
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> B e. P ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> C e. P ) |
| 18 |
7
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> D e. P ) |
| 19 |
8
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> E e. P ) |
| 20 |
9
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> F e. P ) |
| 21 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 22 |
1 2 21 3 4 5 6 7 8 9
|
trgcgrg |
|- ( ph -> ( <" A B C "> ( cgrG ` G ) <" D E F "> <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) |
| 23 |
22
|
biimpa |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) |
| 24 |
23
|
simp1d |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( A .- B ) = ( D .- E ) ) |
| 25 |
23
|
simp2d |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( B .- C ) = ( E .- F ) ) |
| 26 |
23
|
simp3d |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( C .- A ) = ( F .- D ) ) |
| 27 |
10
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> A =/= B ) |
| 28 |
11
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> B =/= C ) |
| 29 |
12
|
adantr |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> C =/= A ) |
| 30 |
1 2 13 14 15 16 17 18 19 20 24 25 26 27 28 29
|
tgsss1 |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 31 |
1 2 13 14 17 15 16 20 18 19 26 24 25 29 27 28
|
tgsss1 |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> <" C A B "> ( cgrA ` G ) <" F D E "> ) |
| 32 |
1 2 13 14 16 17 15 19 20 18 25 26 24 28 29 27
|
tgsss1 |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> <" B C A "> ( cgrA ` G ) <" E F D "> ) |
| 33 |
30 31 32
|
3jca |
|- ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) |
| 34 |
33
|
ex |
|- ( ph -> ( <" A B C "> ( cgrG ` G ) <" D E F "> -> ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) ) |
| 35 |
34
|
pm4.71d |
|- ( ph -> ( <" A B C "> ( cgrG ` G ) <" D E F "> <-> ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) ) ) |
| 36 |
22
|
anbi1d |
|- ( ph -> ( ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) <-> ( ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) /\ ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) ) ) |
| 37 |
35 36
|
bitrd |
|- ( ph -> ( <" A B C "> ( cgrG ` G ) <" D E F "> <-> ( ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) /\ ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) ) ) |