Step |
Hyp |
Ref |
Expression |
1 |
|
df-cnfld |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
2 |
|
eqidd |
|- ( T. -> <. ( Base ` ndx ) , CC >. = <. ( Base ` ndx ) , CC >. ) |
3 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
4 |
|
ffn |
|- ( + : ( CC X. CC ) --> CC -> + Fn ( CC X. CC ) ) |
5 |
3 4
|
ax-mp |
|- + Fn ( CC X. CC ) |
6 |
|
fnov |
|- ( + Fn ( CC X. CC ) <-> + = ( u e. CC , v e. CC |-> ( u + v ) ) ) |
7 |
5 6
|
mpbi |
|- + = ( u e. CC , v e. CC |-> ( u + v ) ) |
8 |
|
eqcom |
|- ( + = ( u e. CC , v e. CC |-> ( u + v ) ) <-> ( u e. CC , v e. CC |-> ( u + v ) ) = + ) |
9 |
7 8
|
mpbi |
|- ( u e. CC , v e. CC |-> ( u + v ) ) = + |
10 |
9
|
opeq2i |
|- <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. = <. ( +g ` ndx ) , + >. |
11 |
10
|
a1i |
|- ( T. -> <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. = <. ( +g ` ndx ) , + >. ) |
12 |
|
ax-mulf |
|- x. : ( CC X. CC ) --> CC |
13 |
|
ffn |
|- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
14 |
12 13
|
ax-mp |
|- x. Fn ( CC X. CC ) |
15 |
|
fnov |
|- ( x. Fn ( CC X. CC ) <-> x. = ( u e. CC , v e. CC |-> ( u x. v ) ) ) |
16 |
14 15
|
mpbi |
|- x. = ( u e. CC , v e. CC |-> ( u x. v ) ) |
17 |
|
eqcom |
|- ( x. = ( u e. CC , v e. CC |-> ( u x. v ) ) <-> ( u e. CC , v e. CC |-> ( u x. v ) ) = x. ) |
18 |
16 17
|
mpbi |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) = x. |
19 |
18
|
opeq2i |
|- <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. = <. ( .r ` ndx ) , x. >. |
20 |
19
|
a1i |
|- ( T. -> <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. = <. ( .r ` ndx ) , x. >. ) |
21 |
2 11 20
|
tpeq123d |
|- ( T. -> { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } ) |
22 |
21
|
mptru |
|- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } |
23 |
22
|
uneq1i |
|- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) = ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
24 |
23
|
uneq1i |
|- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
25 |
1 24
|
eqtri |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |