Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | dfcnvrefrel5 | |- ( CnvRefRel R <-> ( A. x A. y ( x R y -> x = y ) /\ Rel R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnvrefrel4 | |- ( CnvRefRel R <-> ( R C_ _I /\ Rel R ) ) |
|
2 | cnvref5 | |- ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x = y ) ) ) |
|
3 | 1 2 | bianim | |- ( CnvRefRel R <-> ( A. x A. y ( x R y -> x = y ) /\ Rel R ) ) |