| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-cnvrefrels | 
							 |-  CnvRefRels = ( CnvRefs i^i Rels )  | 
						
						
							| 2 | 
							
								
							 | 
							df-cnvrefs | 
							 |-  CnvRefs = { r | ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) } | 
						
						
							| 3 | 
							
								1 2
							 | 
							abeqin | 
							 |-  CnvRefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) } | 
						
						
							| 4 | 
							
								
							 | 
							dmexg | 
							 |-  ( r e. _V -> dom r e. _V )  | 
						
						
							| 5 | 
							
								4
							 | 
							elv | 
							 |-  dom r e. _V  | 
						
						
							| 6 | 
							
								
							 | 
							rnexg | 
							 |-  ( r e. _V -> ran r e. _V )  | 
						
						
							| 7 | 
							
								6
							 | 
							elv | 
							 |-  ran r e. _V  | 
						
						
							| 8 | 
							
								5 7
							 | 
							xpex | 
							 |-  ( dom r X. ran r ) e. _V  | 
						
						
							| 9 | 
							
								
							 | 
							inex2g | 
							 |-  ( ( dom r X. ran r ) e. _V -> ( _I i^i ( dom r X. ran r ) ) e. _V )  | 
						
						
							| 10 | 
							
								
							 | 
							brcnvssr | 
							 |-  ( ( _I i^i ( dom r X. ran r ) ) e. _V -> ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							mp2b | 
							 |-  ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							inxpssidinxp | 
							 |-  ( ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) <-> A. x e. dom r A. y e. ran r ( x r y -> x = y ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							bitri | 
							 |-  ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> A. x e. dom r A. y e. ran r ( x r y -> x = y ) )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							rabbieq | 
							 |-  CnvRefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x r y -> x = y ) } |