| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relco |  |-  Rel ( A o. B ) | 
						
							| 2 |  | reliun |  |-  ( Rel U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> A. x e. _V Rel ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 3 |  | relxp |  |-  Rel ( ( `' B " { x } ) X. ( A " { x } ) ) | 
						
							| 4 | 3 | a1i |  |-  ( x e. _V -> Rel ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 5 | 2 4 | mprgbir |  |-  Rel U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) | 
						
							| 6 |  | opelco2g |  |-  ( ( y e. _V /\ z e. _V ) -> ( <. y , z >. e. ( A o. B ) <-> E. x ( <. y , x >. e. B /\ <. x , z >. e. A ) ) ) | 
						
							| 7 | 6 | el2v |  |-  ( <. y , z >. e. ( A o. B ) <-> E. x ( <. y , x >. e. B /\ <. x , z >. e. A ) ) | 
						
							| 8 |  | eliun |  |-  ( <. y , z >. e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. _V <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 9 |  | rexv |  |-  ( E. x e. _V <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 10 |  | opelxp |  |-  ( <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> ( y e. ( `' B " { x } ) /\ z e. ( A " { x } ) ) ) | 
						
							| 11 |  | vex |  |-  x e. _V | 
						
							| 12 |  | vex |  |-  y e. _V | 
						
							| 13 | 11 12 | elimasn |  |-  ( y e. ( `' B " { x } ) <-> <. x , y >. e. `' B ) | 
						
							| 14 | 11 12 | opelcnv |  |-  ( <. x , y >. e. `' B <-> <. y , x >. e. B ) | 
						
							| 15 | 13 14 | bitri |  |-  ( y e. ( `' B " { x } ) <-> <. y , x >. e. B ) | 
						
							| 16 |  | vex |  |-  z e. _V | 
						
							| 17 | 11 16 | elimasn |  |-  ( z e. ( A " { x } ) <-> <. x , z >. e. A ) | 
						
							| 18 | 15 17 | anbi12i |  |-  ( ( y e. ( `' B " { x } ) /\ z e. ( A " { x } ) ) <-> ( <. y , x >. e. B /\ <. x , z >. e. A ) ) | 
						
							| 19 | 10 18 | bitri |  |-  ( <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> ( <. y , x >. e. B /\ <. x , z >. e. A ) ) | 
						
							| 20 | 19 | exbii |  |-  ( E. x <. y , z >. e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x ( <. y , x >. e. B /\ <. x , z >. e. A ) ) | 
						
							| 21 | 8 9 20 | 3bitrri |  |-  ( E. x ( <. y , x >. e. B /\ <. x , z >. e. A ) <-> <. y , z >. e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 22 | 7 21 | bitri |  |-  ( <. y , z >. e. ( A o. B ) <-> <. y , z >. e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 23 | 1 5 22 | eqrelriiv |  |-  ( A o. B ) = U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) |