| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfco2 |  |-  ( A o. B ) = U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) | 
						
							| 2 |  | vex |  |-  z e. _V | 
						
							| 3 | 2 | eliniseg |  |-  ( x e. _V -> ( z e. ( `' B " { x } ) <-> z B x ) ) | 
						
							| 4 | 3 | elv |  |-  ( z e. ( `' B " { x } ) <-> z B x ) | 
						
							| 5 |  | vex |  |-  x e. _V | 
						
							| 6 | 2 5 | brelrn |  |-  ( z B x -> x e. ran B ) | 
						
							| 7 | 4 6 | sylbi |  |-  ( z e. ( `' B " { x } ) -> x e. ran B ) | 
						
							| 8 |  | vex |  |-  w e. _V | 
						
							| 9 | 5 8 | elimasn |  |-  ( w e. ( A " { x } ) <-> <. x , w >. e. A ) | 
						
							| 10 | 5 8 | opeldm |  |-  ( <. x , w >. e. A -> x e. dom A ) | 
						
							| 11 | 9 10 | sylbi |  |-  ( w e. ( A " { x } ) -> x e. dom A ) | 
						
							| 12 | 7 11 | anim12ci |  |-  ( ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) -> ( x e. dom A /\ x e. ran B ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( y = <. z , w >. /\ ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) ) -> ( x e. dom A /\ x e. ran B ) ) | 
						
							| 14 | 13 | exlimivv |  |-  ( E. z E. w ( y = <. z , w >. /\ ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) ) -> ( x e. dom A /\ x e. ran B ) ) | 
						
							| 15 |  | elxp |  |-  ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. z E. w ( y = <. z , w >. /\ ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) ) ) | 
						
							| 16 |  | elin |  |-  ( x e. ( dom A i^i ran B ) <-> ( x e. dom A /\ x e. ran B ) ) | 
						
							| 17 | 14 15 16 | 3imtr4i |  |-  ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) -> x e. ( dom A i^i ran B ) ) | 
						
							| 18 |  | ssel |  |-  ( ( dom A i^i ran B ) C_ C -> ( x e. ( dom A i^i ran B ) -> x e. C ) ) | 
						
							| 19 | 17 18 | syl5 |  |-  ( ( dom A i^i ran B ) C_ C -> ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) -> x e. C ) ) | 
						
							| 20 | 19 | pm4.71rd |  |-  ( ( dom A i^i ran B ) C_ C -> ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> ( x e. C /\ y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) ) | 
						
							| 21 | 20 | exbidv |  |-  ( ( dom A i^i ran B ) C_ C -> ( E. x y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x ( x e. C /\ y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) ) | 
						
							| 22 |  | rexv |  |-  ( E. x e. _V y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 23 |  | df-rex |  |-  ( E. x e. C y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x ( x e. C /\ y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) | 
						
							| 24 | 21 22 23 | 3bitr4g |  |-  ( ( dom A i^i ran B ) C_ C -> ( E. x e. _V y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. C y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) | 
						
							| 25 |  | eliun |  |-  ( y e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. _V y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 26 |  | eliun |  |-  ( y e. U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. C y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 27 | 24 25 26 | 3bitr4g |  |-  ( ( dom A i^i ran B ) C_ C -> ( y e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> y e. U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) | 
						
							| 28 | 27 | eqrdv |  |-  ( ( dom A i^i ran B ) C_ C -> U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) = U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) | 
						
							| 29 | 1 28 | eqtrid |  |-  ( ( dom A i^i ran B ) C_ C -> ( A o. B ) = U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) |