Step |
Hyp |
Ref |
Expression |
1 |
|
dfco2 |
|- ( A o. B ) = U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) |
2 |
|
vex |
|- z e. _V |
3 |
2
|
eliniseg |
|- ( x e. _V -> ( z e. ( `' B " { x } ) <-> z B x ) ) |
4 |
3
|
elv |
|- ( z e. ( `' B " { x } ) <-> z B x ) |
5 |
|
vex |
|- x e. _V |
6 |
2 5
|
brelrn |
|- ( z B x -> x e. ran B ) |
7 |
4 6
|
sylbi |
|- ( z e. ( `' B " { x } ) -> x e. ran B ) |
8 |
|
vex |
|- w e. _V |
9 |
5 8
|
elimasn |
|- ( w e. ( A " { x } ) <-> <. x , w >. e. A ) |
10 |
5 8
|
opeldm |
|- ( <. x , w >. e. A -> x e. dom A ) |
11 |
9 10
|
sylbi |
|- ( w e. ( A " { x } ) -> x e. dom A ) |
12 |
7 11
|
anim12ci |
|- ( ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) -> ( x e. dom A /\ x e. ran B ) ) |
13 |
12
|
adantl |
|- ( ( y = <. z , w >. /\ ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) ) -> ( x e. dom A /\ x e. ran B ) ) |
14 |
13
|
exlimivv |
|- ( E. z E. w ( y = <. z , w >. /\ ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) ) -> ( x e. dom A /\ x e. ran B ) ) |
15 |
|
elxp |
|- ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. z E. w ( y = <. z , w >. /\ ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) ) ) |
16 |
|
elin |
|- ( x e. ( dom A i^i ran B ) <-> ( x e. dom A /\ x e. ran B ) ) |
17 |
14 15 16
|
3imtr4i |
|- ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) -> x e. ( dom A i^i ran B ) ) |
18 |
|
ssel |
|- ( ( dom A i^i ran B ) C_ C -> ( x e. ( dom A i^i ran B ) -> x e. C ) ) |
19 |
17 18
|
syl5 |
|- ( ( dom A i^i ran B ) C_ C -> ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) -> x e. C ) ) |
20 |
19
|
pm4.71rd |
|- ( ( dom A i^i ran B ) C_ C -> ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> ( x e. C /\ y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) ) |
21 |
20
|
exbidv |
|- ( ( dom A i^i ran B ) C_ C -> ( E. x y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x ( x e. C /\ y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) ) |
22 |
|
rexv |
|- ( E. x e. _V y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
23 |
|
df-rex |
|- ( E. x e. C y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x ( x e. C /\ y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) |
24 |
21 22 23
|
3bitr4g |
|- ( ( dom A i^i ran B ) C_ C -> ( E. x e. _V y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. C y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) |
25 |
|
eliun |
|- ( y e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. _V y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
26 |
|
eliun |
|- ( y e. U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. C y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
27 |
24 25 26
|
3bitr4g |
|- ( ( dom A i^i ran B ) C_ C -> ( y e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> y e. U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) |
28 |
27
|
eqrdv |
|- ( ( dom A i^i ran B ) C_ C -> U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) = U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
29 |
1 28
|
eqtrid |
|- ( ( dom A i^i ran B ) C_ C -> ( A o. B ) = U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) |