| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							brcnvg | 
							 |-  ( ( x e. _V /\ u e. _V ) -> ( x `' R u <-> u R x ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							el2v | 
							 |-  ( x `' R u <-> u R x )  | 
						
						
							| 3 | 
							
								2
							 | 
							anbi1i | 
							 |-  ( ( x `' R u /\ u R y ) <-> ( u R x /\ u R y ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							exbii | 
							 |-  ( E. u ( x `' R u /\ u R y ) <-> E. u ( u R x /\ u R y ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							opabbii | 
							 |-  { <. x , y >. | E. u ( x `' R u /\ u R y ) } = { <. x , y >. | E. u ( u R x /\ u R y ) } | 
						
						
							| 6 | 
							
								
							 | 
							df-co | 
							 |-  ( R o. `' R ) = { <. x , y >. | E. u ( x `' R u /\ u R y ) } | 
						
						
							| 7 | 
							
								
							 | 
							df-coss | 
							 |-  ,~ R = { <. x , y >. | E. u ( u R x /\ u R y ) } | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							3eqtr4ri | 
							 |-  ,~ R = ( R o. `' R )  |