Metamath Proof Explorer


Theorem dfdec10

Description: Version of the definition of the "decimal constructor" using ; 1 0 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021)

Ref Expression
Assertion dfdec10
|- ; A B = ( ( ; 1 0 x. A ) + B )

Proof

Step Hyp Ref Expression
1 df-dec
 |-  ; A B = ( ( ( 9 + 1 ) x. A ) + B )
2 9p1e10
 |-  ( 9 + 1 ) = ; 1 0
3 2 oveq1i
 |-  ( ( 9 + 1 ) x. A ) = ( ; 1 0 x. A )
4 3 oveq1i
 |-  ( ( ( 9 + 1 ) x. A ) + B ) = ( ( ; 1 0 x. A ) + B )
5 1 4 eqtri
 |-  ; A B = ( ( ; 1 0 x. A ) + B )