| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfdec100.a |
|- A e. NN0 |
| 2 |
|
dfdec100.b |
|- B e. NN0 |
| 3 |
|
dfdec100.c |
|- C e. RR |
| 4 |
|
dfdec10 |
|- ; B C = ( ( ; 1 0 x. B ) + C ) |
| 5 |
4
|
oveq2i |
|- ( ( ; ; 1 0 0 x. A ) + ; B C ) = ( ( ; ; 1 0 0 x. A ) + ( ( ; 1 0 x. B ) + C ) ) |
| 6 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 7 |
6
|
dec0u |
|- ( ; 1 0 x. ; 1 0 ) = ; ; 1 0 0 |
| 8 |
6
|
nn0cni |
|- ; 1 0 e. CC |
| 9 |
8 8
|
mulcli |
|- ( ; 1 0 x. ; 1 0 ) e. CC |
| 10 |
7 9
|
eqeltrri |
|- ; ; 1 0 0 e. CC |
| 11 |
1
|
nn0cni |
|- A e. CC |
| 12 |
10 11
|
mulcli |
|- ( ; ; 1 0 0 x. A ) e. CC |
| 13 |
2
|
nn0cni |
|- B e. CC |
| 14 |
8 13
|
mulcli |
|- ( ; 1 0 x. B ) e. CC |
| 15 |
3
|
recni |
|- C e. CC |
| 16 |
12 14 15
|
addassi |
|- ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) = ( ( ; ; 1 0 0 x. A ) + ( ( ; 1 0 x. B ) + C ) ) |
| 17 |
|
dfdec10 |
|- ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) |
| 18 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
| 19 |
18
|
oveq2i |
|- ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) |
| 20 |
8 11
|
mulcli |
|- ( ; 1 0 x. A ) e. CC |
| 21 |
8 20 13
|
adddii |
|- ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) |
| 22 |
8 8 11
|
mulassi |
|- ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ; 1 0 x. ( ; 1 0 x. A ) ) |
| 23 |
7
|
oveq1i |
|- ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ; ; 1 0 0 x. A ) |
| 24 |
22 23
|
eqtr3i |
|- ( ; 1 0 x. ( ; 1 0 x. A ) ) = ( ; ; 1 0 0 x. A ) |
| 25 |
24
|
oveq1i |
|- ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) = ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) |
| 26 |
19 21 25
|
3eqtri |
|- ( ; 1 0 x. ; A B ) = ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) |
| 27 |
26
|
oveq1i |
|- ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) |
| 28 |
17 27
|
eqtr2i |
|- ( ( ( ; ; 1 0 0 x. A ) + ( ; 1 0 x. B ) ) + C ) = ; ; A B C |
| 29 |
5 16 28
|
3eqtr2ri |
|- ; ; A B C = ( ( ; ; 1 0 0 x. A ) + ; B C ) |