Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfdisjs2 | |- Disjs = { r e. Rels | ,~ `' r C_ _I } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfdisjs |  |-  Disjs = { r e. Rels | ,~ `' r e. CnvRefRels } | 
						|
| 2 | cosselcnvrefrels2 | |- ( ,~ `' r e. CnvRefRels <-> ( ,~ `' r C_ _I /\ ,~ `' r e. Rels ) )  | 
						|
| 3 | cosscnvelrels | |- ( r e. Rels -> ,~ `' r e. Rels )  | 
						|
| 4 | 3 | biantrud | |- ( r e. Rels -> ( ,~ `' r C_ _I <-> ( ,~ `' r C_ _I /\ ,~ `' r e. Rels ) ) )  | 
						
| 5 | 2 4 | bitr4id | |- ( r e. Rels -> ( ,~ `' r e. CnvRefRels <-> ,~ `' r C_ _I ) )  | 
						
| 6 | 1 5 | rabimbieq |  |-  Disjs = { r e. Rels | ,~ `' r C_ _I } |